Search This Blog

Tuesday, 17 April 2018

Reduction of Energy Storage Requirements in Future Smart Grid Using Electri

The electric spring is an emerging technology proven to be effective in i) stabilizing smart grid with substantial penetration of intermittent renewable energy sources and ii) enabling load demand to follow power generation. The subtle change from output voltage control to input voltage control of a reactive power controller offers the electric spring new features suitable for future smart grid applications. In this project, the effects of such subtle control change are highlighted, and the use of the electric springs in reducing energy storage requirements in power grid is theoretically proven and practically demonstrated in an experimental setup of a 90 kVApower grid.Unlike traditional Statcom and StaticVar Compensation technologies, the electric spring offers not only reactive power compensation but also automatic power variation in non-critical loads. Such an advantageous feature enables noncritical loads with embedded electric springs to be adaptive to future power grid. Consequently, the load demand can follow power generation, and the energy buffer and therefore energy storage requirements can be reduced.
1.      Distributed power systems
2.      Energy storage
3.      Smart grid
4.      Stability


Fig. 1. Experimental setup based on the 90 kVA Smart Grid Hardware Simulation
System at the Maurice Hancock Smart Energy Laboratory.


Fig. 2. Measured rms power line voltage (vs) and non-critical load voltage (vo)

Fig. 3. Measured average powers of the wind power simulator (PG+PR), battery storage (PS) and non-critical load(P1)

Fig. 4. Measured power (Ps) and energy change (Es) of the battery storage.

Fig. 5. Measured electric spring reactive power (QES), critical load voltage (VR2) and power (P2).

In this paper, the differences between the output voltage control and the input voltage control of a reactive power controller are highlighted. While energy storage is an effective but expensive means to balance power supply and demand, an analysis and practical confirmation are presented to show that electric springs can reduce energy storage requirements in a power grid. Electric springs allow the non-critical load power to vary with the renewable energy profile. By reducing the instantaneous power imbalance of power supply and demand, electric springs allow the non-critical load demand profile to follow the power generation profile and reduce the energy storage requirements in power grid. This important point has been theoretically proved and practically verified in an experimental setup. Due to the advantageous features such as enabling the load demand to follow the power generation, the reduction of energy storage requirements, the reactive power compensation for voltage regulation, and the possibility of both active and reactive power control [28], electric springs open a door to distributed stability control for future smart grid with substantial penetration of intermittent renewable energy sources.
[1] D. Westermann and A. John, “Demand matching wind power generation with wide-area measurement and demand-side management,” IEEE Trans. Energy Convers., vol. 22, no. 1 , pp. 145–149, 2007.
[2] P. Palensky and D. Dietrich, “Demand side management: Demand response, intelligent energy systems, and smart loads,” IEEE Trans. Ind. Inform., vol. 7 , no. 3 , pp. 381–388, 2011.
[3] P. Varaiya, F. Wu, and J. Bialek, “Smart operation of smart grid: Risklimiting dispatch,” Proc. IEEE, vol. 99, no. 1 , pp. 40–57, 2011.
[4] I. Koutsopoulos and L. Tassiulas, “Challenges in demand load control for the smart grid,” IEEE Netw., vol. 25, no. 5 , pp. 16–21, 2011.
[5] A. Mohsenian-Rad, V. W. S. Wong, J. Jatskevich, R. Schober, and A. Leon-Garcia, “Autonomous demand-side management based on gametheoretic energy consumption scheduling for the future smart grid,” IEEE Trans. Smart Grid, vol. 1 , no. 3 , pp. 320–331, 2011.