asokatechnologies@gmail.com 09347143789/09949240245

Search This Blog

Showing posts sorted by relevance for query Direct Torque Control using Switching Table for Induction Motor Fed by Quasi Z-Source Inverter. Sort by date Show all posts
Showing posts sorted by relevance for query Direct Torque Control using Switching Table for Induction Motor Fed by Quasi Z-Source Inverter. Sort by date Show all posts

Saturday 26 February 2022

Direct Torque Control using Switching Table for Induction Motor Fed by Quasi Z-Source Inverter

 ABSTRACT:

Z-source inverters eliminate the need for front-end DC-DC boost converters in applications with limited DC voltage such as solar PV, fuel cell. Quasi Z-source inverters offer advantages over Z-source inverter, such as continuous source current and lower component ratings. In this paper, switching table based Direct Torque Control (DTC) of induction motor fed by quasi Z-Source Inverter (qZSI) is presented. In the proposed technique, dc link voltage is boosted by incorporating shoot through state into the switching table. This simplifies the implementation of DTC using qZSI. An additional DC link voltage hysteresis controller is included along with torque and flux hysteresis controllers used in conventional DTC. The results validate the boost capability of qZSI and torque response of the DTC.

KEYWORDS:

1.      DTC

2.      qZSI

3.      DC-DC Converter

4.      DC Link Voltage

5.      Hysteresis Controller

SOFTWARE: MATLAB/SIMULINK

BLOCK DIAGRAM:



Fig. 1: Block Diagram for DTC using Qzsi

EXPECTED SIMULATION RESULTS:


 Fig. 2: Torque vs. Time


Fig. 3: Stator Phase 'a' Current


Fig. 4: Speed vs. Time


Fig. 5: DC Link Voltage


Fig. 6: Capacitor Voltage, VC1

CONCLUSION:

 In this paper, direct torque control of induction motor fed by qZSI is presented. Dynamic torque response for step change obtained is 3 ms, which is needed for high performance applications. qZSI provides a single stage solution for drives with variable input DC voItage, instead of DC-DC converter cascaded with 3-leg inverter bridge. This paper presents a solution for drives with lesser DC input voItage availability and also requiring very fast torque response. The results shows that by introducing shoot through state in switching table of direct torque control, DC link voItage in qZSI is boosted. The DC link voItage hysteresis controller uses the input and capacitor voItage for controlling DC link voItage. If there is any disturbance in input voItage, the reference for capacitor voItage will be changed accordingly to maintain the DC link voItage.

REFERENCES:

 [1] 1. Takahashi and Y. Ohmori, "High-performance direct torque control of an induction motor, " IEEE Trans. Ind. Appl., vol. 25, no. 2, pp. 257-264, 1989.

[2] B.-S. Lee and R. Krishnan, "Adaptive stator resistance compensator for high performance direct torque controlled induction motor drives, " in Industry Applications Conference, 1998. Thirty-Third lAS Annual Meeting. The 1998 IEEE, vol. I, Oct 1998, pp. 423-430 voLl.

[3] G. Buja and M. Kazmierkowski, "Direct torque control of pwm inverter-fed ac motors-a survey, " IEEE Trans. Ind. Electron., vol. 51, no. 4, pp. 744-757, Aug 2004.

[4] F. Z. Peng, "Z-source inverter, " IEEE Trans. Ind. Appl., vol. 39, no. 2, pp. 504-510, Mar 2003.

[5] F. Z. Peng, A. Joseph, J. Wang, M. Shen, L. Chen, Z. Pan, E. Ortiz-Rivera, and Y. Huang, "Z-source inverter for motor drives, " IEEE Trans. Power Electron., vol. 20, no. 4, pp. 857-863, July 2005.

Thursday 30 May 2019

Direct Torque Control using Switching Table for Induction Motor Fed by Quasi Z-Source Inverter


ABSTRACT:

Z-source inverters eliminate the need for front-end DC-DC boost converters in applications with limited DC voltage such as solar PV, fuel cell. Quasi Z-source inverters offer advantages over Z-source inverter, such as continuous source current and lower component ratings. In this paper, switching table based Direct Torque Control (DTC) of induction motor fed by quasi Z-Source Inverter (qZSI) is presented. In the proposed technique, dc link voltage is boosted by incorporating shoot through state into the switching table. This simplifies the implementation of DTC using qZSI. An additional DC link voltage hysteresis controller is included along with torque and flux hysteresis controllers used in conventional DTC. The results validate the boost capability of qZSI and torque response of the DTC.
KEYWORDS:
1.      DTC
2.      QZSI
3.      DC-DC Converter
4.      DC Link Voltage
5.      Hysteresis Controller

SOFTWARE: MATLAB/SIMULINK

 BLOCK DIAGRAM:







Fig. 1: Block Diagram for DTC using qZSI





EXPECTED SIMULATION RESULTS:



Fig.2: Torque vs. Time


Fig. 3: Stator Phase 'a' Current



Fig. 4: Speed vs. Time



Fig. 5: DC Link Voltage




Fig. 6: Capacitor Voltage, VC1


CONCLUSION:

In this paper, direct torque control of induction motor fed by qZSI is presented. Dynamic torque response for step change obtained is 3 ms, which is needed for high performance applications. qZSI provides a single stage solution for drives with variable input DC voItage, instead of DC-DC converter cascaded with 3-leg inverter bridge. This paper presents a solution for drives with lesser DC input voItage availability and also requiring very fast torque response. The results shows that by introducing shoot through state in switching table of direct torque control, DC link voItage in qZSI is boosted. The DC link voItage hysteresis controller uses the input and capacitor voItage for controlling DC link voItage. If there is any disturbance in input voItage, the reference for capacitor voItage will be changed accordingly to maintain the DC link voItage.

 REFERENCES:

[I] 1. Takahashi and Y. Ohmori, "High-performance direct torque control of an induction motor, " IEEE Trans. Ind. Appl., vol. 25, no. 2, pp. 257-264, 1989.
[2] B.-S. Lee and R. Krishnan, "Adaptive stator resistance compensator for high performance direct torque controlled induction motor drives, " in Industry Applications Conference, 1998. Thirty-Third lAS Annual Meeting. The 1998 IEEE, vol. I, Oct 1998, pp. 423-430 voLl.
[3] G. Buja and M. Kazmierkowski, "Direct torque control of pwm inverter-fed ac motors-a survey, " IEEE Trans. Ind. Electron., vol. 51, no. 4, pp. 744-757, Aug 2004.
[4] F. Z. Peng, "Z-source inverter, " IEEE Trans. Ind. Appl., vol. 39, no. 2, pp. 504-510, Mar 2003.
[5] F. Z. Peng, A. Joseph, J. Wang, M. Shen, L. Chen, Z. Pan, E. Ortiz-Rivera, and Y. Huang, "Z-source inverter for motor drives, " IEEE Trans. Power Electron., vol. 20, no. 4, pp. 857-863, July2005.