asokatechnologies@gmail.com 09347143789/09949240245

Search This Blog

Friday, 27 January 2017

Speed Control of PMBLDC Motor Using MATLAB/Simulink and Effects of Load and Inertia Changes



ABSTRACT:
Modeling and simulation of electromechanical systems with machine drives are essential steps at the design stage of such systems. This paper describes the procedure of deriving a model for the brush less dc motor with 120-degree inverter system and its validation in the MATLAB/Simulink platform. The discussion arrives at a closed-loop speed control, in which PI algorithm is adopted and the position-pulse determination is done through current control for a standard trapezoidal BLDC motors. The simulation results for BLDC motor drive systems confirm the validity of the proposed method.

KEYWORDS:
1.      PMBLDC Motor
2.      Simulation and modeling
3.      Speed control

SOFTWARE: MATLAB/SIMULINK

BLOCK DIAGRAM:


                                
Figure 1. PMBLDC motor drive system

EXPECTED SIMULATION RESULTS:

Steady state current

 Figure 2. Stator phase currents

 Back EMF of the BLDC motor



Figure 3. Trapezoidal back EMF
    
 

Figure 4. Reference current waveform


 Figure 5. Representative phase voltage (van)

Figure 6. Torque and speed responses during startup transients



Figure 7. Torque and speed responses - step input change - moment of
inertia 0.013 kg-m2 (step time 0.5 S)

Figure 8 Torque and speed responses at moment of inertia 0.098 kg-m'


Figure 9. Torque and speed-Step input with moment of inertia 0.098
kg-m2 (step time 0.5 S)

Figure 10. Step load torque (9Nm) at 0.75 step



Figure 11. Step load torque (25 Nm) at 0.75


 



Figure 12. Application of heavy load (100 Nm)


Figure 13. Load toque 25Nm at step of 0.5


CONCLUSION:

The nonlinear simulation model of the BLDC motors drive system with PI control based on MATLAB/Simulink platform is presented. The control structure has an inner current closed-loop and an outer-speed loop to govern the current. The speed controller regulates the rotor movement by varying the frequency of the pulse based on signal feedback from the Hall sensors. The performance of the developed PI algorithm based speed controller of the drive has revealed that the algorithm devises the behavior of the PMBLDC motor drive system work satisfactorily. Current is regulated within band by the hysteresis current regulator. And also by varying the moment of inertia observe that increase in moment of inertia it increases simulation time to reach the steady state value. Consequently, the developed controller has robust speed characteristics against parameters and inertia variations. Therefore, it can be adapted speed control for high performance BLDC motor.

REFERENCES:

 [I] Duane C.Hanselman, "Brushless Permanent-Magnet Motor Design", McGraw-Hill, Inc., New York, 1994.
[2] TJ.E. Miller, 'Brushless Permanent Magnet and Reluctance Motor Drives.' Oxford Science Publication, UK, 1989.
[3] RKrishnan, Electric Motor Drives: Modeling, Analysis, and Control, Prentice-Hall, Upper Saddle River, NJ, 2001.
[4] P Pillay and R Krishnan, "Modeling, simulation, and analysis of permanent Magnet motor drives. Part II: The brushless dc motor drive," IEEE Transactions on Industry Applications, vol.IA-25, no.2, pp.274-279, Mar./Apr. 1989.
[5] RKrishnan and A. J. Beutler, "Performance and design of an axial field permanent magnet synchronous motor servo drive," Proceedings of IEEE lASAnnual Meeting, pp.634-640,1985.




Wednesday, 25 January 2017

Operation of Series and Shunt Converters with 48-pulse Series Connected three-level NPC Converter for UPFC


ABSTRACT:
The 48-pulse series connected 3-level Neutral Point Clamped (NPC) converter approach has been used in Unified Power Flow Controller (UPFC) application due to its near sinusoidal voltage quality. This paper investigates the control and operation of series and shunt converters with 48-pulse Voltage Source Converters (VSC) for UPFC application. A novel controller for series converter is designed based on the “angle control” of the 48-pulse voltage source converter. The complete simulation model of shunt and series converters for UPFC application is implemented in Matlab/Simulink. The practical real and reactive power operation boundary of UPFC in a 3-bus power system is specifically investigated. The performance of UPFC connected to the 500-kV grid with the proposed controller is evaluated. The simulation results validate the proposed control scheme under both steady state and dynamic operating conditions.

KEYWORDS:
1.      48-pulse converter
2.      Neutral Point Clamped (NPC) converter
3.      Angle control
4.      Unified Power Flow Controller (UPFC)

SOFTWARE: MATLAB/SIMULINK

BLOCK DIAGRAM:


Fig. 1. 48-pulse VSC based +100 MVA UPFC in a 3-bus power system

EXPECTED SIMULATION RESULTS:



Fig.2 Line real power (top) and reactive power (bottom) references (MVA)



Fig. 3 Measured real and reactive power, DC link voltage and converter angles (Top trace: measured line real power (MW); second top trace: measured line reactive power, (MVar); third top trace: DC bus voltage; fourth top trace: shunt converter angle α ; fifth top trace: series converter angle α ; bottom trace: series converter angle σ ).



Fig.4 Shunt converter output voltage (blue), Line voltage (green) and shunt
converter current (red) (5.42s-5.48s)



Fig.5 Shunt converter real power (blue, p.u.), reactive power (green, p.u.).


Fig.6 Current (p.u.) of transmission line L1.



Fig.7 Series converter 48 pulse converter voltage (blue, p.u.) and current
(black, p.u.) during time 2~2.03s (when real power reference is increased)



Fig. 8 Series converter angle σ vs. DC bus voltage (Top trace: line real
power and reactive power; second top trace: shunt converter injected reactive
power; third top trace: DC bus voltage; bottom trace: series converter
angle σ )
CONCLUSION:

In this paper, the control and operation of series and shunt converters with 48-pulse series connected 3-level NPC converter for UPFC application are investigated. A new angle controller for 48-pulse series converter is proposed to control the series injection voltage, and therefore the real and reactive power flow on the compensated line. The practical UPFC real and reactive power operation boundary in a 3-bus system is investigated; this provides a benchmark to set the system P and Q references. The simulation of UPFC connected to the 500-kV grid verifies the proposed controller and the independent real power and reactive power control of UPFC with series connected transformer based 48-pulse converter.

REFERENCES:

[1] N. G. Hingorani, "Power electronics in electric utilities: role of power electronics in future power systems," Proceedings of the IEEE, vol. 76, pp. 481, 1988.
[2] N. G. Hingorani and L. Gyugyi, Understanding FACTS: concepts and technology of flexible AC transmission systems: IEEE Press, 2000.
[3] L. Gyugyi, "Dynamic compensation of AC transmission lines by solid-state synchronous voltage sources," IEEE Transactions on Power Delivery, vol. 9, pp. 904, 1994.
[4] C. D. Schauder, L. Gyugyi etc. “Operation of the unified power flow controller (UPFC) under practical constraints,” IEEE Transactions on Power Delivery, vol. 13, pp. 630-639, April 1998.

[5] L. Gyugyi. “Unified power-flow control concept for flexible AC transmission systems,” IEE Proceedings - Generation, Transmission and Distribution, vo. 139, pp. 323-331, July 1992.

A Novel Control Method for Transformerless H-Bridge Cascaded STATCOM With Star Configuration


ABSTRACT:

This paper presents a transformerless static synchronous compensator (STATCOM) system based on multilevel H-bridge converter with star configuration. This proposed control methods devote themselves not only to the current loop control but also to the dc capacitor voltage control. With regards to the current loop control, a nonlinear controller based on the passivity-based control (PBC) theory is used in this cascaded structure STATCOM for the first time. As to the dc capacitor voltage control, overall voltage control is realized by adopting a proportional resonant controller. Clustered balancing control is obtained by using an active disturbances rejection controller. Individual balancing control is achieved by shifting the modulation wave vertically which can be easily implemented in a field-programmable gate array. Two actual H-bridge cascaded STATCOMs rated at 10 kV 2 MVA are constructed and a series of verification tests are executed. The experimental results prove that H-bridge cascaded STATCOM with the proposed control methods has excellent dynamic performance and strong robustness. The dc capacitor voltage can be maintained at the given value effectively.

KEYWORDS

1.      Active disturbances rejection controller (ADRC)
2.      H-bridge cascaded
3.      Passivity-based control (PBC)
4.       Proportional resonant (PR) controller
5.      Shifting modulation wave
6.       Static synchronous compensator (STATCOM).

SOFTWARE: MATLAB/SIMULINK

CIRCUIT DIAGRAM:




Fig 1.Configuration of the experimental system.

EXPECTED SIMULATION RESULTS:




Fig. 2. Experimental results verify the effect of PBC in steady-state process. (a) Ch1: reactive current; Ch2: compensating current; Ch3: residual current of grid. (b) Ch1: reactive current; Ch2: compensating current; Ch3: residual current of grid.





Fig. 3. Experimental results show the dynamic performance of STATCOM in the dynamic process. Ch1: reactive current; Ch2: compensating current; Ch3: residual current of grid.






Fig. 4. Experimental results in the startup process and stopping process. (a) Ch1: reactive current; Ch2: compensating current; Ch3: residual current of grid. (b) Ch1: reactive current; Ch2: compensating current; Ch3: residual current of grid.



Fig. 5. Experimental waveforms for testing overall voltage control in the
startup process.


CONCLUSION:

This paper has analyzed the fundamentals of STATCOM based on multilevel H-bridge converter with star configuration. And then, the actual H-bridge cascaded STATCOM rated at 10 kV 2 MVA is constructed and the novel control methods are also proposed in detail. The proposed methods has the following characteristics.
1) A PBC theory-based nonlinear controller is first used in STATCOM with this cascaded structure for the current loop control, and the viability is verified by the experimental results.
2) The PR controller is designed for overall voltage control and the experimental result proves that it has better performance in terms of response time and damping profile compared with the PI controller.
3) The ADRC is first used in H-bridge cascaded STATCOM for clustered balancing control and the experimental results verify that it can realize excellent dynamic compensation for the outside disturbance.
4) The individual balancing control method which is realized by shifting the modulation wave vertically can be easily implemented in the FPGA.
The experimental results have confirmed that the proposed methods are feasible and effective. In addition, the findings of this study can be extended to the control of any multilevel voltage source converter, especially those with H-bridge cascaded structure.

 REFERENCES:

[1] B. Gultekin and M. Ermis, “Cascaded multilevel converter-based transmission STATCOM: System design methodology and development of a 12 kV ±12 MVAr power stage,” IEEE Trans. Power Electron., vol. 28, no. 11, pp. 4930–4950, Nov. 2013.
[2] B. Gultekin, C. O. Gerc¸ek, T. Atalik, M. Deniz, N. Bic¸er, M. Ermis, K. Kose, C. Ermis, E. Koc¸, I. C¸ adirci, A. Ac¸ik, Y. Akkaya, H. Toygar, and S. Bideci, “Design and implementation of a 154-kV±50-Mvar transmission STATCOM based on 21-level cascaded multilevel converter,” IEEE Trans. Ind. Appl., vol. 48, no. 3, pp. 1030–1045, May/Jun. 2012.
[3] S. Kouro, M. Malinowski, K. Gopakumar, L. G. Franquelo, J. Pou, J. Rodriguez, B.Wu,M. A. Perez, and J. I. Leon, “Recent advances and industrial applications of multilevel converters,” IEEE Trans. Ind. Electron., vol. 57, no. 8, pp. 2553–2580, Aug. 2010.
[4] F. Z. Peng, J.-S. Lai, J. W. McKeever, and J. VanCoevering, “A multilevel voltage-source inverter with separate DC sources for static var generation,” IEEE Trans. Ind. Appl., vol. 32, no. 5, pp. 1130–1138, Sep./Oct. 1996.

[5] Y. S. Lai and F. S. Shyu, “Topology for hybrid multilevel inverter,” Proc. Inst. Elect. Eng.—Elect. Power Appl., vol. 149, no. 6, pp. 449–458, Nov. 2002.