asokatechnologies@gmail.com 09347143789/09949240245

Search This Blog

Tuesday, 6 March 2018

Novel Approach Employing Buck-Boost Converter as DC-Link Modulator and Inverter as AC-Chopper for Induction Motor Drive Applications: An Alternative to Conventional AC-DC-AC Scheme



ABSTRACT:
Induction motor (IM) is the workhorse of the industries. Amongst various speed control schemes for IM, variable-voltage variable-frequency (VVVF) is popularly used. Inverters are broadly used to produce variable/controlled frequency and variable/controlled output voltage for various applications like ac machine drives, switched mode power supply (SMPS), uninterruptible power supplies (UPS), etc. This paper presents the two-fold solution of control for such loads. In this novel solution, rms values of output voltage is varied by controlling the inverter duty ratio which operates as an ac chopper, while the fundamental frequency of output voltage is varied by controlling the buck-boost converter according to the reference frequency given to it. The buck-boost converter shuffles between buck-mode and boost-mode to produce required frequency by generating the modulated dc-link for the inverter, unlike conventional fixed dc-link in case of ac-dc-ac converters. The proposed technique eliminates over modulation (as in conventional pulse width modulated inverters) and hence the non-linearity, and lower order harmonics are absent. Further, it reduces dv/dt in the output voltage resulting less stress on the insulation of machine winding, and electromagnetic interference. However, the proposed scheme demands more number of power semiconductor devices as compared to their conventional ac-dc ac counterparts. Simulation studies of proposed single-phase as well as three-phase topologies are carried out in MATLAB/Simulink. Hardware implementation of proposed single-phase topology is done using dSPACE DS1104 R&D controller board and results are presented.
KEYWORDS:
1.      Ac-chopper
2.      Buck-boost converter
3.      Dc-link modulation
4.       Inverter
5.      Variable-voltage variable-frequency
6.       V/f  induction motor drive

SOFTWARE: MATLAB/SIMULINK

BLOCK DIAGRAM:


Fig. 1. Block diagram for the proposed topology.

 EXPECTED SIMULATION RESULTS:



(a) Plot of output voltage (rms) of inverter v/s duty ratio.



(b) Output voltage waveform of the proposed inverter: [X-axis: 1 div. = 0.01 s, Y-axis: 1 div. = 100 V].



(c) Output voltage of conventional inverter for unipolar SPWM: [X-axis: 1 div. = 0.01 s, Y-axis: 1 div. = 100 V].



(d) FFT plot of the output voltage with the proposed topology.


(e) FFT plot of output voltage with unipolar SPWM inverter.
Fig. 2. Analysis of the proposed topology.



(a) Output voltage of the proposed topology: [X-axis: 1 div. = 0.01 s, Y-axis:
1 div. = 50 V].

(b) Comparison of reference voltage and input voltage (upper trace), comparison of reference voltage and output voltage (lower trace) of buck-boost converter Upper trace: [X-axis: 1 div. = 0.01 s, Y-axis: 1 div. = 100 V] Lower trace: [X-axis: 1 div. = 0.01 s, Y-axis: 1 div. = 50 V].

(c) Output voltage and reference voltage of buck-boost converter at f=10 Hz,
f=20 Hz, f=25 Hz: [X-axis: 1 div. = 0.01 s, Y-axis: 1 div. = 100 V].

(d) Output voltage and reference voltage of buck-boost converter at f=30 Hz,
f=40 Hz, f=50 Hz: [X-axis: 1 div. = 0.01 s, Y-axis: 1 div. = 100 V].
Fig. 3 Simulation results of the proposed buck-boost converter.

(b) Gate pulses of MOSFETs M2 and M3, Comparison of input voltage and reference voltage, Gate pulses M1, M2, M3: [X-axis: 1 div. = 0.002 s, Y-axis: 1 div. = 1 V], Voltage: [X-axis: 1 div. = 0.002 s, Y-axis: 1 div. = 100 V].


(c) Output voltage waveforms of buck-boost converter without La Output voltage of buck-boost converter and reference voltage with La: [X-axis: 1 div. = 0.02 s, Y-axis: 1 div. = 50 V], Output voltage of inverter with La: [Xaxis: 1 div. = 0.02 s, Y-axis: 1 div. = 100 V].

(d) Output voltage of buck-boost converter and inverter and inverter with La Blue color: Reference voltage, Green color: Actual output voltage of buckboost converter, Output voltage of buck-boost converter and reference voltage without La: [X-axis: 1 div. = 0.02 s, Y-axis: 1 div. = 50 V], Output voltage of inverter without La: [X-axis: 1 div. = 0.02 s, Y-axis: 1 div. = 100 V].
Fig. 4 Results for improving output voltage of inverter.


(b) Pole voltage of phase A and output of buck-boost converter compared with reference voltage of three-phase system Blue color: Reference voltage Green color: Actual output voltage of buck-boost converter for three-phase Pole voltage of phase A: [X-axis: 1 div. = 0.05 s, Y-axis: 1 div. = 50 V] Output voltage of buck-boost converter of phase A: [X-axis: 1 div. = 0.05 s,
Y-axis: 1 div. = 50 V].
Fig. 5 Simulation result of proposed three-phase topology.

CONCLUSION:
Relation between fundamental output voltage (rms) and duty ratio of switches of ac chopper operating as inverter is linear. So, on increasing the duty ratio of pulses given to switches, output voltage of inverter increases linearly. To get 100 % inverter output voltage, no need to go in over modulation region, which eliminates the non-linearity. The profile of output voltage of inverter (with chopping depending on the duty ratio of its switches) is sinusoidal because of modulated dc-link provided by the buck-boost converter, which reduces lower order harmonics, and %THD. It also reduces dv/dt as envelope of output voltage is sinusoidal as full dc-link voltage is not switched. This reduction in dv/dt reduces the stresses on the enameled copper wire of the stator winding of the motor. It will reduce the inter-turn short circuit failure of stator winding. Also this reduction of dv/dt will reduce the electromagnetic interference generated by the inverter in the drive system. In the proposed scheme, output voltage of buck-boost converter follows the reference voltage very closely for different frequencies, so when reference voltage is greater than input voltage, converter has to operate in boost mode else operates in buck mode. Hardware implementation of proposed single phase scheme is carried out. The hardware results have very close resemblance with the simulation results. The proposed concept is novel, and with appropriate refinements, can offer new era of control of inverter for V/f three-phase induction motor drive applications. However, it demands more number of power semiconductor devices compared to that needed for the conventional ac-dc-ac approach.
REFERENCES:
[1] Jose Thankachan, and Saly George, “A novel switching scheme for three phase PWM ac chopper fed induction motor,” in Proc. IEEE 5th India International Conference on Power Electronics (IICPE), pp. 1-4, 2012.
[2] Amudhavalli D., and Narendran L., “Speed control of an induction motor by V/f method using an improved Z-source inverter,” in Proc. International Conference on Emerging Trends in Electrical Engineering and Energy Management (ICETEEEM), pp. 436-440, 2012.
[3] G. W. Heumann, “Adjustable frequency control of high-speed induction motors,” Electrical Engineering, vol. 66, no. 6, pp. 576-579, June 1947. [4] Mineo Tsuji, Xiaodan Zhao, He Zhang, and Shinichi Hamasaki, “New simplified V/f control of induction motor for precise speed operation,” in Proc. International Conference on Electrical Machines and Systems (ICEMS), pp. 1-6 , 2011.
[5] V. K. Jayakrishnan, M. V. Sarin, K. Archana, and A. Chitra, “Performance analysis of MLI fed induction motor drive with IFOC speed control,” in Proc. Annual IEEE India Conference (INDICON), pp. 1-6, 2013.

Monday, 5 March 2018

Electric Spring for Voltage and Power Stability and Power Factor Correction




ABSTRACT:

Electric Spring (ES), a new smart grid technology, has earlier been used for providing voltage and power stability in a weakly regulated/stand-alone renewable energy source powered grid. It has been proposed as a demand side management technique to provide voltage and power regulation. In this paper, a new control scheme is presented for the implementation of the electric spring, in conjunction with non-critical building loads like electric heaters, refrigerators and central air conditioning system. This control scheme would be able to provide power factor correction of the system, voltage support, and power balance for the critical loads, such as the building's security system, in addition to the existing characteristics of electric spring of voltage and power stability. The proposed control scheme is compared with original ES’s control scheme where only reactive-power is injected. The improvised control scheme opens new avenues for the utilization of the electric spring to a greater extent by providing voltage and power stability and enhancing the power quality in the renewable energy powered microgrids.

KEYWORDS:
1.      Demand Side Management
2.      Electric Spring
3.      Power Quality
4.       Single Phase Inverter
5.       Renewable Energy

SOFTWARE: MATLAB/SIMULINK

CIRCUIT DIAGRAM:



Fig. 1. Electric Spring in a circuit

 EXPECTED SIMULATION RESULTS:


Fig. 2. Over-voltage, Conventional ES: RMS Line voltage, ES Voltage, and Non-Critical load voltage (ES turned on at t=0.5 sec)

Fig. 3. Over-voltage, Conventional ES: ower Factor of system (ES turned on at t = 0.5 sec)

Fig. 4. Over-voltage, Conventional ES: Active and Reactive power across critical load, non-critical load, and electric spring (ES turned on at t=0.5 sec)


Fig. 5. Under-voltage, Conventional ES: RMS Line voltage, ES Voltage, and
Non-Critical load voltage (ES turned on at t=0.5 sec)


Fig. 6. Under-voltage, Conventional ES: Power Factor of system (ES turned on at t = 0.5 sec)


Fig. 7. Under-voltage, Conventional ES: Active and Reactive power across critical load, non-critical load, and electric spring (ES turned on at t=0.5 sec)


Fig.8. Over-voltage, Improvised ES: RMS Line voltage, ES Voltage, and Non-Critical load voltage (ES turned on at t=0.5 sec)

Fig. 9. Over-voltage, Improvised ES: Power Factor of system (ES turned on at t = 0.5 sec)



Fig. 10. Over-voltage, Improvised ES: Active and Reactive power across critical load, non-critical load, and electric spring (ES turned on at t=0.5 sec)

Fig. 11. Under-voltage, Improvised ES: RMS Line voltage, ES Voltage, and Non-Critical load voltage (ES turned on at t=0.5 sec)



Fig. 12. Under-voltage, Improvised ES: Power Factor of system (ES turned on at t = 0.5 sec)

Fig. 13. Under-voltage, Improvised ES: Active and Reactive power across critical load, non-critical load, and electric spring (ES turned on at t=0.5 sec)


CONCLUSION:
In this paper as well as earlier literatures, the Electric Spring was demonstrated as an ingenious solution to the problem of voltage and power instability associated with renewable energy powered grids. Further in this paper, by the implementation of the proposed improvised control scheme it was demonstrated that the improvised Electric Spring (a) maintained line voltage to reference voltage of 230 Volt, (b) maintained constant power to the critical load, and (c) improved overall power factor of the system compared to the conventional ES. Also, the proposed ‘input-voltage-input-current’ control scheme is compared to the conventional ‘input-voltage’ control. It was shown, through simulation and hardware-in-loop emulation, that using a single device voltage and power regulation and power quality improvement can be achieved. It was also shown that the improvised control scheme has merit over the conventional ES with only reactive power injection. Also, it is proposed that electric spring could be embedded in future home appliances [1]. If many non-critical loads in the buildings are equipped with ES, they could provide a reliable and effective solution to voltage and power stability and insitu power factor correction in a renewable energy powered microgrids. It would be a unique demand side management (DSM) solution which could be implemented without any reliance on information and communication technologies.
REFERENCES:
[1] S. Y. Hui, C. K. Lee, and F. F. Wu, “Electric springs - a new smart grid technology,” IEEE Transactions on Smart Grid, vol. 3, no. 3, pp. 1552–1561, Sept 2012.
[2] S. Hui, C. Lee, and F. WU, “Power control circuit and method for stabilizing a power supply,” 2012. [Online]. Available: http://www.google.com/patents/US20120080420
[3] C. K. Lee, N. R. Chaudhuri, B. Chaudhuri, and S. Y. R. Hui, “Droop control of distributed electric springs for stabilizing future power grid,” IEEE Transactions on Smart Grid, vol. 4, no. 3, pp. 1558–1566, Sept 2013.
[4] C. K. Lee, B. Chaudhuri, and S. Y. Hui, “Hardware and control implementation of electric springs for stabilizing future smart grid with intermittent renewable energy sources,” IEEE Journal of Emerging and Selected Topics in Power Electronics, vol. 1, no. 1, pp. 18–27, March 2013.
[5] C. K. Lee, K. L. Cheng, and W. M. Ng, “Load characterisation of electric spring,” in 2013 IEEE Energy Conversion Congress and Exposition, Sept 2013, pp. 4665–4670.



Saturday, 3 March 2018

DC Electric Springs – A Technology for Stabilizing DC Power Distribution Systems



ABSTRACT:
There is a growing interest in using DC power systems and microgrids for our electricity transmission and distribution, particularly with the increasing penetration of photovoltaic power systems. This paper presents an electric active suspension technology known as the DC electric springs for voltage stabilization and power quality improvement. The basic operating modes and characteristic of a DC electric spring with different types of serially-connected non-critical loads will first be introduced. Then, the various power delivery issues of the DC power systems, namely bus voltage variation, voltage droop, system fault, and harmonics, are briefly described. The operating limits of a DC electric spring in a DC power grid is studied. It is demonstrated that the aforementioned issues can be mitigated using the proposed DC electric spring technology. Experiment results are provided to verify the feasibility of the proposed technology.

KEYWORDS:
1.      Smart load
2.      Distributed power systems
3.      Power electronics
4.      Electric springs
5.      DC grids
6.      Smart grid

SOFTWARE: MATLAB/SIMULINK

 BLOCK DIAGRAM:





Fig. 1. The basic configuration of DC electric springs.

 EXPECTED SIMULATION RESULTS:




Fig. 2. Enlarged experiment waveforms based on the raw data exported from the oscilloscope corresponding


Fig. 3. Enlarged experiment waveforms based on the raw data exported from the oscilloscope corresponding


CONCLUSION:
In this paper, the concept of DC electric springs (ES) is firstly introduced to cope with several issues of DC power grids. The DC-ES is proposed as an active suspension system. Similar to their AC counterparts, the DC-ES can provide dynamic voltage regulation for the DC bus. The DC-ES connected in series with different types of non-critical loads to form a smart load have been analyzed and their operating modes have been identified and explained. Furthermore, the operating limits of the DC-ES under a given set of system parameters is studied, which provides quantitative analytical procedures to estimate the theoretical limits of ES. The paper provides a fundamental study on the DC-ES including the characteristics, the modes of operation, and the operating limits. The theoretical analysis and the performance of the DCES have been practically verified.
REFERENCES:
[1] R. Lobenstein and C. Sulzberger, “Eyewitness to DC history,” Power and Energy Magazine, IEEE, vol. 6, no. 3, pp. 84–90, May 2008.
[2] G. Neidhofer, “Early three-phase power,” Power and Energy Magazine, IEEE, vol. 5, no. 5, pp. 88–100, Sep. 2007.
[3] B. C. Beaudreau, World Trade: A Network Approach. iUniverse, 2004.
[4] H. Kakigano, Y. Miura, and T. Ise, “Distribution voltage control for DC microgrids using fuzzy control and gain-scheduling technique,” IEEE Trans. Power Electron., vol. 28, no. 5, pp. 2246–2258, May 2013.
[5] P. Loh, D. Li, Y. K. Chai, and F. Blaabjerg, “Autonomous operation of hybrid microgrid with AC and DC subgrids,” IEEE Trans. Power Electron., vol. 28, no. 5, pp. 2214–2223, May 2013.

Friday, 2 March 2018

Adaptive Speed Control of Brushless DC (BLDC) Motor Based on Interval Type-2 Fuzzy Logic



ABSTRACT:
To precisely control the speed of BLDC motors at high speed and with very good performance, an accurate motor model is required. As a result, the controller design can play an important role in the effectiveness of the system. The classic controllers such as PID are widely used in the BLDC motor controllers, but they are not appropriate due to non-linear model of the BLDC motor. To enhance the performance and speed of response, many studies were taken to improve the adjusting methods of PID controller gains by using fuzzy logic. Use of fuzzy logic considering approximately interpretation of the observations and determination of the approximate commands, provides a good platform for designing intelligent robust controller. Nowadays type-2 fuzzy logic is used because of more ability to model and reduce uncertainty effects in rule-based fuzzy systems. In this paper, an interval type-2 fuzzy logic-based proportional-integral-derivative controller (IT2FLPIDC) is proposed for speed control of brushless DC (BLDC) motor. The proposed controller performance is compared with the conventional PID and type-1 fuzzy logic-based PID controllers, respectively in MATLAB/Simulink environment. Simulation results show the superior IT2FLPIDC performance than two other ones.

KEYWORDS:

1.      Brushless DC (BLDC) Motor
2.      Invertal Type-2 Fuzzy Logic
3.      Speed Control
4.      Self-tuning PID Controller

 SOFTWARE: MATLAB/SIMULINK

BLOCK DIAGRAM:
Figure 1. Block Diagram of speed control of BLDC Motor
EXPECTED SIMULATION RESULTS:


Figure 2. Speed Deviation of BLDC Motor


Figure 3. Load Deviation of BLDC Motor



Figure 4. Torque Deviation of BLDC Motor

CONCLUSION:
In this paper, the speed control of the BLDC motor is studied and simulated in MATLAB/Simulink. In order to overcome uncertainties and variant working condition, the adjustment of PID gains through fuzzy logic is proposed. In this study, three controller types are considered and compared: conventional PID, type-1 and type-2 fuzzy-based self-tuning PID controllers. The simulation results show that type-2 fuzzy PID controller has superior performance and response than two other ones.
REFERENCES:
[1] A. Sathyan, N. Milivojevic, Y. J. Lee, M. Krishnamurthy, and A. Emadi, “An FPGA-based novel digital PWM control scheme for BLDC motor drives,” IEEE Trans. Ind. Electron., vol. 56, no. 8, pp. 3040–3049,Aug. 2009.
[2] F. Rodriguez and A. Emadi, “A novel digital control technique for brushless DC motor drives,” IEEE Trans. Ind. Electron., vol. 54, no. 5, pp. 2365–2373, Oct. 2007.
[3] Y. Liu, Z. Q. Zhu, and D. HoweDirect Torque Control of Brushless DC Drives With Reduced Torque RippleIEEE Trans. Ind. Appl., vol. 41, no. 2, pp. 599-608, March/April 2005.
[4] T. S. Kim, S. C. Ahn, and D. S. Hyun , “A New Current Control Algorithm for Torque Ripple Reduction of BLDC Motors,” in IECON'01, 27th Conf. IEEE Ind. Electron Society,2001
[5] W. A. Salah, D. Ishak, K. J. Hammadi, “PWM Switching Strategy for Torque Ripple Minimization in BLDC MotorFEI STU, Journal of Electrical Engineering, vol. 62, no. 3, 2011, 141–146.