asokatechnologies@gmail.com 09347143789/09949240245

Search This Blog

Tuesday, 1 June 2021

IMPROVED FAULT RIDE THROUGH CAPABILITY OF DFIG BASED WIND TURBINES USING SYNCHRONOUS REFERENCE FRAME CONTROL BASED DYNAMIC VOLTAGE RESTORER

ABSTRACT:

Fault ride through(FRT) capability in wind turbines to maintain the grid stability during faults has be- come mandatory with the increasing grid penetration of wind energy .Doubly fed induction generator based wind turbine(DFIG-WT) is the most popularly utilized type of generator but highly susceptible to the voltage disturbances in grid. Dynamic voltage restorer (DVR) based external FRT capability improve mentis considered. Since DVR is capable of providing fast voltage sag mitigation during faults and can maintain the nominal operating conditions for DFIG-WT. The effectiveness of the DVR using Synchronous reference frame (SRF) control is investigated for FRT capability in DFIG-WT during both balanced and unbalanced fault conditions .The operation of DVR is confirmed using time-domain simulation in MATLAB/Simulinkusing1.5MWDFIG-WT.

KEYWORDS:

1.      Doubly fed induction generator (DFIG)

2.      Fault ride through (FRT)

3.      Low voltage ride through (LVRT)

4.      Dynamic voltage restorer (DVR)

5.      Synchronous reference frame (SRF) control

 SOFTWARE: MATLAB/SIMULINK

 CONCLUSION:

The FRT capability of wind turbines are essential with the growing integration of wind power in the grid and contribute to the reliable grid integration. There are several countries which have recently imposed the mandatory guidelines for FRT capability implementation in already installed and operating grid connected wind turbines. Therefore this paper investigates the performance of DVR with SRF control for the FRT capability of DFIG-WTs. The control performance is compared with Feed-forward control which is operated with the same synchronous reference frame. The performance of the controllers is compared for the voltage sag mitigation during balanced and unbalanced grid faults. The har- monic mitigation capability of DVR is also discussed. The com- parison of harmonic compensation of both controllers in terms of % THD shows that SRF control provides better performance. The performance comparison suggests that the operation of DVR is suitable for FRT capability as per grid code standards imposed globally. Simulation results show better performance of DVR with SRF control for improving the FRT capability of DFIG-WT.

REFERENCES:

[1] LiYW, Blaabjerg F, VilathgamuwaDM,Loh PC. Design and comparison of high performance stationary-frame controllers for DVR implementation. IEEE Trans PowerElectron2007;22:602–12. http://dx.doi.org/10.1109/TPEL.2006.890002.

[2] JadhavHT,RoyR.A comprehensive review on the grid integration of doubly fed induction generator.IntJElectrPowerEnergySyst2013;49:8–18. http://dx.doi. org/10.1016/j.ijepes.2012.11.020.

[3] Sorensen P,UnnikrishnanA K,Mathew SA.Wind farms connected to weak grids inIndia.WindEnergy2001;4:137–49. http://dx.doi.org/10.1002/we.52.

[4] XuL,WangY.Dynamic modeling and control of DFIG-based wind turbines under unbalancednetworkconditions.IEEETransPowerSyst2007;22 :314– 23. http://dx.doi.org/10.1109/TPWRS.2006.889113.

[5]Singh B, Singh SN. Development of grid connection requirements for wind power generators in India. Renew Sustain Energy Rev 2011;15: 1669–74.

http://dx.doi.org/ 10.1016/j.rser.2010.11.026.

 

Tuesday, 4 May 2021

Compact Regenerative Braking Scheme For A PM BLDC Motor Driven Electric Two-Wheeler

 ABSTRACT:

Regenerative method of braking of an electric vehicle (EV) helps in efficient utilization of the battery power to increase the range of the vehicle. Methods described in literature for the regeneration use complex control algorithms to deal with the energy flow during the transition from the motoring mode to the regenerative braking mode of PM BLDC motor driven EV. In this paper, a simple method to control the power flow from the motor to the battery by changing the switching sequence given to the inverter used in the PM BLDC motor drive is presented. The newly presented method gives lower braking time and higher regeneration, and also does not necessitate any additional converters or ultra-capacitors.

KEYWORDS:

1.      Electric two wheeler

2.      Electric vehicle (EV)

3.      Hub motor

4.      Motor

5.      PM BLDC Motor

6.      Regenerative braking

SOFTWARE: MATLAB/SIMULINK


CONCLUSION:

The line back-EMF based regeneration method presented in this paper delivers far better performance than the mechanical braking in two-wheeler EVs also. Further, the presented method is the simplest one among the known regenerative methods in terms of the simplicity of the system, ease of implementation and also the higher braking torque developed. In this method, a noticeable power is fed back to the battery. The range of the EV is obviously increased.

REFERENCES:

 

[1] J. W. Dixon, and M. E. Ortlizar, “Ultracapacitors + DC–DC Converters in Regenerative Braking System,” IEEE Aerospace and Electronic Systems magazine, Vol. 17, No. 8, pp. 16–21, August 2002.

[2] J. Cao, B. Cao, Z. Bai and W. Chen,” Energy regenerative Fuzzy Sliding mode Controller design for Ultra capacitor –Battery Hybrid Power Electric Vehicle,” Proceedings of the IEEE Int. Conf. on Mechatronics and Automation, , pp. 1570–1575, August 2007.

[3] J. Cao and B. Cao,”Fuzzy-logic - Based Sliding Mode Controller Design for Position -Sensorless Electric vehicle,” IEEE Trans.Power Electron. vol. 24, no. 10, pp. 2368-- 2378, October 2009.

[4] M. Ye, Z. F. Bai, and B. Cao, “Robust H2/Infinity Control for Regenerative Braking of Electric Vehicles,” Proceedings of the IEEE Int. Conf. on Control and Automation, pp. 1366–1370, May/June 2007

[5] J. Cao, B. Cao, Z. Bai and P. Xu , ” Regenerative – Braking Sliding mode Control of Electric Vehicle based on Neural network Identification,” Proceedings of the IEEE Int. Conf. on Advanced  Intelligent Mechatronics, pp. 1219–1224, July 2008.

Thursday, 22 April 2021

Performance Analysis of Solar PV array and Battery Integrated Unified Power Quality Conditioner for Microgrid Systems

 ABSTRACT:

In this work, a methodology for implementation of an automated transition of a solar PV array and battery integrated unified power quality conditioner (PV-BUPQC) between standalone and grid connected modes of operation is presented and analyzed. This system consists of a shunt and series active filters connected back to back with a common DC-link. The system addresses the issue of the integrating power quality improvement along with the generation of clean energy. Moreover, due to the automated transition, the critical loads have continuous power supply irrespective of grid availability. The key challenges addressed are implementation of automated transition in a PV-B-UPQC system with minimal disturbance to the local loads. The system operation is validated through experimentation under a number of dynamic conditions such as automated transition, supply voltage variations, unavailability of the grid, variation in solar power generation, load variation, etc., which are typically encountered in a modern distribution network.

KEYWORDS:

1.      Power quality

2.      Unified power quality conditioner

3.      Solar PV Generation

4.      Battery energy storage

5.      Automated transition

6.      Constant power generation

SOFTWARE: MATLAB/SIMULINK

CONCLUSION:

The design and performance of solar PV and battery integrated UPQC have been presented in this work. Due to the presence of energy storage in form of battery bank, the system operates in standalone mode of operation whenever grid is not available thus maintaining continuity of power supply to critical loads. Moreover, the system mitigates power fluctuations occurring in PV power generation due to weather conditions, thus enabling smooth power generation. This leads to increased stability of the overall system. The behavior of the system under steay state has been found satisfactory and the PCC currents meet the THD limits prescribed in the IEEE-519 standard.

The response of the PV-B-UPQC has been extensively evaluated under both standalone and grid connected modes of operation. The response of PV-B UPQC is found satisfactory under various conditions of irradiation variation, load unbalance and sags/swells in PCC voltage. Under all these disturbance conditions, the PV-B-UPQC is able to feed constant power into distribution network. The system automatically changes from the grid-tied operation to islanded operation and vice versa with minimal disturbance to the sensitive and critical load. The three wire PV-B-UPQC is suitable for the systems with operating with sensitive and critical load such as in data centers, hospitals, factories where uninterrupted power supply is of prime importance. The integration of battery and renewable energy, enables minimum dependence on the grid for power demand while the surplus PV power can support the grid by giving power to nearby loads at PCC.

REFERENCES:

[1] S. Singh, B. Singh, G. Bhuvaneswari, and V. Bist, “A power quality improved bridgeless converter-based computer power supply,” IEEE Transactions on Industry Applications, vol. 52, no. 5, pp. 4385–4394, Sep. 2016

[2] A. K. Giri, S. R. Arya, and R. Maurya, “Compensation of power quality problems in wind-based renewable energy system for small consumer as isolated loads,” IEEE Transactions on Industrial Electronics, vol. 66, no. 11, pp. 9023–9031, Nov. 2019.

[3] N. Saxena, I. Hussain, B. Singh, and A. L. Vyas, “Implementation of a grid-integrated pv-battery system for residential and electrical vehicle applications,” IEEE Transactions on Industrial Electronics, vol. 65, no. 8, pp. 6592–6601, Aug. 2018.

[4] S. Roy Ghatak, S. Sannigrahi, and P. Acharjee, “Multi-objective approach for strategic incorporation of solar energy source, battery storage system, and dstatcom in a smart grid environment,” IEEE Systems Journal, vol. 13, no. 3, pp. 3038–3049, Sep. 2019.

[5] K. K. Prasad, H. Myneni, and G. S. Kumar, “Power quality improvement and pv power injection by dstatcom with variable dc link voltage control from rsc-mlc,” IEEE Transactions on Sustainable Energy, vol. 10, no. 2, pp. 876–885, Apr. 2019.

Friday, 9 April 2021

Active Power Filter for Harmonic Mitigation of Power Quality Issues in Grid Integrated Photovoltaic Generation System

 ABSTRACT:

 

Single phase supply scheme tied with Photovoltaic arrangement (PV) employed on perturbed & observed (P&O) maximum energy point tracking technique with shunt active power filter allied to a rectifier feed R-L nonlinear load. The traditional Perturbed & Observed technique maximum energy point tracking topology is applied to attained maximum output power from Photovoltaic array(PVA), Proportional Integral conventional controller with phase detector (PD) phase locked loop (PLL) synchronization are executed to produce reference current. It provide at control unit of pulse width modulation topology( PWM) is utilized in inverter to get steady output voltage. Self supported DC bus PWM converter is regulated from PV array. In proposed architecture is minimized total harmonic pollution existing in supply current owing to power electronic load (PEL). Total current harmonic pollution (THDi) is compensated using dynamic filter shunt active power filter (SAPF) and power factor obtain better later than compensation. Hence, reactive power (KVAR) is delivered through system decrease and active power (KW) enhance. The suggested scheme has been implemented by way of MATLAB/SIMULINK 2015(a) environment.

KEYWORDS:

 

1.      Shunt Active Power Filter (SAPF)

2.      Photovoltaic Array (PVA)

3.      Proportional Integral controller

4.      Pulse width Modulated (PWM) Converter

5.      Maximum Power Point Tracking (P & O) Scheme

 

SOFTWARE: MATLAB/SIMULINK

 CONCLUSION:

In this research paper SAPF based on phase detector circuit (PLL) for unit vector generation with traditional PI controller is implemented. This controller regulates DC side voltage, reference current generated by PI conventional controller and positive progression predictor PLL synchronization unit. Hystersis band current control (HBCC) is employed to produce gate signal for voltage source inverter (VSI). The source current THD is abridged to fewer than 5% that is in accordance IEEE-519 standards for harmonic. Active power is improved by dynamic filtering using SAPF and decrease in reactive power consequently, power factor level is become finer.

REFERENCES:

[1] M. Singh, V. Khadkikar, A. Chandra, and R. K. Varma,“Grid Interconnection of Renewable Energy Sources at the Distribution Level With Power-Quality Improvement Features” IEEE Transactions on Power Delivery, vol. 26, no. 1, January 2011.

[2] S. Agrawal, Seemant Chorsiya, D.K Palwalia, “Hybrid Energy Management System design with Renewable Energy Sources (Fuel Cells, PV Cells and Wind Energy): A Review”, IJSET, vol. 6, no. 3, pp.174-177, 2018. DOI : 10.5958/2277 1581.2017.00104.8.

[3] M. G. Villalva, J. R. Gazoli and E. R. Filho, “Modeling and circuit based simulation of photovoltaic arrays”, Brazilian Power Electronics Conference, Bonito-Mato Grosso do Sul, pp. 1244-1254, 2009.

[4] S. Agrawal and D. K. Palwalia, “Analysis of standalone hybrid PVSOFC-  battery generation system based on shunt hybrid active power filter for harmonics mitigation.” IEEE Power India International Conference (PIICON) pp. 1-6, 2016.

[5] M. M. Hashempour, M. Savaghebi, J. C. Vasquez and J. M. Guerrero, “A Control Architecture to Coordinate Distributed Generators and Active Power Filters Coexisting in a Microgrid”, IEEE Transactions on Smart Grid, vol. 7, no. 5, pp. 2325-2336, Sept. 2016.

 

Tuesday, 6 April 2021

Compact Regenerative Braking Scheme for a PM BLDC Motor Driven Electric Two-Wheeler

ABSTRACT:

 Regenerative method of braking of an electric vehicle (EV) helps in efficient utilization of the battery power to increase the range of the vehicle. Methods described in literature for the regeneration use complex control algorithms to deal with the energy flow during the transition from the motoring mode to the regenerative braking mode of PM BLDC motor driven EV. In this paper, a simple method to control the power flow from the motor to the battery by changing the switching sequence given to the inverter used in the PM BLDC motor drive is presented. The newly presented method gives lower braking time and higher regeneration, and also does not necessitate any additional converters or ultra-capacitors.

KEYWORDS:

1.      Electric two wheeler

2.      Electric vehicle (EV)

3.       Hub motor

4.      Motor

5.      PM BLDC Motor

6.      Regenerative braking

 SOFTWARE: MATLAB/SIMULINK

 CONCLUSION:

The line back-EMF based regeneration method presented in this paper delivers far better performance than the mechanical braking in two-wheeler EVs also. Further, the presented method is the simplest one among the known regenerative methods in terms of the simplicity of the system, ease of implementation and also the higher braking torque developed. In this method, a noticeable power is fed back to the battery. The range of the EV is obviously increased.

 REFERENCES:

[1] J. W. Dixon, and M. E. Ortlizar, “Ultracapacitors + DC–DC Converters in Regenerative Braking System,” IEEE Aerospace andElectronic Systems magazine, Vol. 17, No. 8, pp. 16–21, August 2002.

[2] J. Cao, B. Cao, Z. Bai and W. Chen,” Energy regenerative Fuzzy Sliding mode Controller design for Ultra capacitor –Battery Hybrid Power Electric Vehicle,” Proceedings of the IEEE Int. Conf. on Mechatronics and Automation, , pp. 1570–1575, August 2007.

[3] J. Cao and B. Cao,”Fuzzy-logic - Based Sliding Mode Controller Design for Position -Sensorless Electric vehicle,” IEEE Trans.Power Electron. vol. 24, no. 10, pp. 2368-- 2378, October 2009.

[4] M. Ye, Z. F. Bai, and B. Cao, “Robust H2/Infinity Control for Regenerative Braking of Electric Vehicles,” Proceedings of the IEEE Int. Conf. on Control and Automation, pp. 1366–1370, May/June 2007

[5] J. Cao, B. Cao, Z. Bai and P. Xu , ” Regenerative – Braking Sliding mode Control of Electric Vehicle based on Neural network Identification,” Proceedings of the IEEE Int. Conf. on Advanced Intelligent Mechatronics, pp. 1219–1224, July 2008.

Saturday, 20 March 2021

Novel Single Stage Power Factor Corrected LED Driver Topology for Space Constrained Applications of Aircraft Exterior Lighting System

ABSTRACT:

 This paper proposes a novel converter topology based on a single stage LED driver with Power Factor Correction (PFC) which is optimized for weight, volume and cost, for space constrained environments such as Aerospace exterior lighting product. The proposed topology utilizes a single switch to harmonize the input current as well as control the intensity of lighting system. A typical Power Factor Pre-regulator (PFP) uses a bulk energy storage capacitor, which is subjected to wear out a higher altitudes due to low pressure conditions and freezes a negative temperatures, resulting in poor reliability converter for Aerospace applications. Unlike a regular Power Factor Pre-regulator (PFP), the proposed topology avoids the use of bulk energy storage capacitor which results in a fast transient response with enhanced reliability, reduced board real estate and weight. The proposed LED driver topology can control the LED current with both Buck and Boost mode of control, making it a good choice for applications with wide input voltage variation. A 110 W prototype based on proposed converter was built to verify the operation of proposed topology. The experimental results are in line with the predicted performance. The proposed converter is able to achieve a power factor of 0.988 with an input current THD of < 10%.

SOFTWARE: MATLAB/SIMULINK

 CONCLUSION:

This paper presents a novel LED driver topology, capable of input power factor correction, for space constrained applications, such as Aerospace exterior lighting product line. Due to the compact design of the proposed LED driver topology, it can be of great advantage for an integrated power supply solution for Aerospace exterior lighting product offerings. The proposed LED driver topology can control the LED current with both Buck and Boost mode of control, making it a good choice for applications with wide input voltage variation. The proposed LED driver topology has been verified by mathematical analysis, circuit simulation and performance has been demonstrated experimentally as well. The proposed LED driver topology promises an appreciable amount of savings in term of real estate, power loss, and heat sink requirements while enhancing the power density of the converter and its reliability. Typically, it’s the bulk output capacitor that wears out with pressure variation (wear out phenomenon accelerates at altitudes more than 8000m due to the reduced pressures); which can be avoided with the proposed topology. Depending upon the load (number of LEDs) and  input voltage; in order to protect LEDs, a reverse blocking diode may be required during the Buck operation. For Boost application, reverse blocking diode will not be required even with today’s technology. Authors have been granted a U.S. Patent 9363291 [8] against the propose novel LED driver topology.

REFERENCES:

[1] L. H. Dixon, "High Power Factor Preregulators for Off- Line Power Supplies," Unitrode Power Supply Design Seminar Manual SEM600, 1988. (Republished in subsequent Manuals)

[2] Spiazzi, G., and Mattavelli, P. (1994) “Design criteria for power factor preregulators based on SEPIC and Cuk converters in continuous conduction mode,” IEEE IAS Conference Record, 1994, 1084-1089.

[3] Z. Ye, F. Greenfeld, and Z. Liang, “Single-stage offline SEPIC converter with power factor correction to drive high brightness LEDs,” in Proc. IEEE Appl. Power Electron. Conf., 2009, pp. 546–553.

[4] C.Zhou and M.Jovanovic, "Design Trade-offs in Continuous Current-Mode Controlled Boost Power-Factor Correction Circuits", HFPC Cod. Proc., 1992, pp. 209-220

[5] L. H. Dixon, "Average Current Mode Control of Switching Power Supplies," Unitrode Power Supply Design Seminar Manual SEM700, 1990

 

Saturday, 13 March 2021

The Study of Single-phase PWM Rectifier Based on PR Control Strategy

 ABSTRACT:

Synchronous PI controller is usually used to track current in three-phase PWM rectifier with zero steady-state error which is difficult to achieve in the single-phase system. A novel proportional-resonant (PR) control scheme for single-phase PWM rectifier is proposed in the paper. Compared with traditional PI control and current hystereis control (CHC) methods, the PR control structure is simple and can reduce control time delay significantly. The simulation results verify the feasibility of the proposed control scheme in the disturbance rejection. In addition, sinusoidal current zero static error control can be achieved without a coordinate transformation and the DC voltage can automatically adjust to changes of grid voltage, load value and frequency which contributes to energy conversion and bidirectional flow of electricity.

KEYWORDS:

1.      Single-phase rectifiers

2.      CHC control

3.      PR-based control

SOFTWARE: MATLAB/SIMULINK

CONCLUSION:

From the above conducted studies, one can conclude that PR-based Control strategy for single-phase PWM rectifier presents better steady-state and can successfully achieve accurate regulation with fast dynamic response with minimum harmonic distortions. The simulation results show that sinusoidal current zero static error control can be achieved without a coordinate transformation and the DC voltage could automatically adjust to changes of grid voltage, load value and frequency which contributes to energy conversion and bidirectional flow of electricity. The control algorithm is easy to be realized while the robustness and power quality is improved. The highlight of paper lies in applying PR regulator to the adjustment of sinusoidal AC current zero static error , building the system model of single-phase PWM rectifier in MATLAB/Simulink with CHC and PR control scheme respectively and giving proper comparisons to some degree.

 REFERENCES:

[1] Song H.S, Nam K, Instantaneous Phase-angle Estimation Algorithm Under Unbalanced Voltage-sag Condition, IEEE Proc Generation, Transmission, and Distribution, Vol.147, No.6, 409-415, 2000.

[2] Zmood D.N, Holmes D.G, Stationary Frame Current Regulation of PWM Inverters with Zero Steady-state Error, IEEE Transactions on Power Electronics, Vol.18, No.3, 814-822, 2003.

[3] Yuan X, Merk W, Stemmler H, Stationary-frame Generalized Integrators for Current Control of Active Power Filters with Zero Steady-state Error for Current Harmonics of Concern Under Unbalance and Distorted Operating Conditions, IEEE Trans on Industry Applications, Vol.38, No.2, 523-532, 2002.

 [4] ZHAO Qinglin, GUO Xiaoqiang, WU Weiyang, Research on Control Strategy for Single-phase Grid-connected Inverter, Proceedings of the CSEE, 60-64, 2007.

 [5] JIANG Jun-feng, LIU Hui-jin, CHEN Yun-ping, A Novel Double Hystersis Current Control Method of Active Power Filter with Voltage Space Vector. Proceedings of the CSEE, Vol.24, No.10, 82-86, 2004.