ABSTRACT:
This
paper presents a single stage standalone solar photovoltaic (SPV) array fed
water pumping system using a permanent magnet synchronous motor (PMSM). The
vital contribution of this work includes: (i) development of the novel modified
vector control (MVC), which improves the torque response of the system, (ii)
development of a novel single stage variable step size incremental conductance
(VSS-INC) technique, which provides a fast maximum power point tracking (MPPT)
and eliminates the need of intermediate stage DC-DC converter and (iii)
introduction of SPV power feed-forward term (FFT), which accelerates the
overall response of the system under dynamic conditions. This system includes a
SPV array, a three-phase voltage source inverter (VSI), a PMSM and a pump. The
SPV array converts solar energy into electrical energy. The VSI acts as power
processing unit (PPU), which supplies desired currents to drive the PMSM. As
the PMSM rotates, the pump coupled to the motor accomplishes the objective of
water pumping. This system is modelled and simulated using MATLAB/ Simulink
with available simpower system toolbox and the behavior of the system under
varying atmospheric conditions are validated experimentally on a developed
prototype in the laboratory.
KEYWORDS:
1. Solar water pumping
2. Incremental conductance algorithm
3. Maximum power point tracking
4. Permanent magnet synchronous motor
5. Vector control
SOFTWARE:
MATLAB/SIMULINK
CONCLUSION:
A
SPV array fed SWP system using VSS-INC method for MPPT and MVC for speed
control of PMSM, is implemented and performance has been analyzed through
MATLAB simulation and hardware validation. Simulated and experimental results
for starting, steady state and dynamic performances have been found to be quite
satisfactory. With the use of VSS-INC technique, neither the steady state nor
the transient performance is compromised as in conventional INC. The MVC has
improved the torque response. The introduction of feed-forward term has
accelerated the overall response of the system. No steady state oscillations
are observed and faster response has made the system more effective. Detailed
comparative analysis has proven the superiority of this control over existing
conventional control. The use of PMSM for driving the pump, has increased the
system efficiency and has reduced the system size. The use of single stage
topology has eliminated intermediate stage DC-DC converter and reduced the
number of components, consequently resulting in reduction of cost, complexity
and further increase in the system efficiency and compactness. Simulated and
experimental results have found to be quite acceptable and thereby validated
the practical feasibility of the system.
REFERENCES:
[1] E. T.
Maddalena, C. G. d. S. Moraes, G. Bragança, L. G. Junior, R. B. Godoy and J. O.
P. Pinto, “A Battery-Less Photovoltaic Water-Pumping System With Low Decoupling
Capacitance,” IEEE Trans. Ind. Appl., vol. 55, no. 3, pp. 2263-2271,
May-June 2019.
[2] R. Kumar and
B. Singh, “Grid Interactive Solar PV-Based Water Pumping Using BLDC Motor
Drive,” IEEE Trans. Ind. Appl., vol. 55, no. 5, pp. 5153- 5165,
Sept.-Oct. 2019.
[3] A. Upadhyay,
“India rooftop solar power tariff drop to record lows,” Livemint, Aug. 29,
2018. [Online].
Available:
https://www.livemint.com/Industry/cYZ78fnbiNFt1ppRtRm3JP/India-rooft
op-solar-power-tariff-drop-to-record-lows.html [Accessed Nov. 20, 2019].
[4] M. N. Ibrahim,
H. Rezk, M. Al-Dhaifallah and P. Sergeant, “Solar Array Fed Synchronous
Reluctance Motor Driven Water Pump: An Improved Performance Under Partial
Shading Conditions,” IEEE Access, vol. 7, pp. 77100-77115, 2019.
[5] M. Rezkallah,
A. Chandra, M. Tremblay and H. Ibrahim, “Experimental Implementation of an APC
With Enhanced MPPT for Standalone Solar Photovoltaic Based Water Pumping
Station,” IEEE Trans. Sust. Energy, vol. 10, no. 1, pp. 181-191, Jan.
2019.