asokatechnologies@gmail.com 09347143789/09949240245

Search This Blog

Tuesday, 26 July 2022

Peak Current Detection Starting based Position Sensorless Control of BLDC Motor Drive for PV Array Fed Irrigation Pump

ABSTRACT:

a single stage position sensorless control based solar power fed PMBLDC (Permanent Magnet Brushless DC) motor drive scheme for irrigation pump is proposed in this paper. The proposed system is designed without using any mechanical sensor to reduce the cost along with the complexity of the system with optimum utilization of the solar Photovoltaic (PV) power. The proposed system integrated with a PMBLDC motor drive coupled to a water pump is controlled by an inverter input voltage sensing based position sensorless control with high current detection and commutation point estimation based starting to wide speed range control .Elimination of position sensor, makes the system control compact and cheaper. The peak current estimation based starting in sensorless mode, enables soft starting restricting high starting current with reliability like sensor based operation. The proposed drive is tested and validated on a developed laboratory prototype and its suitability is justified with different test results under steady state and dynamic operating conditions.

KEYWORDS:

1.      Peak Current detection based starting

2.       Position sensorless control

3.      Incremental Conductance MPPT Algorithm

4.      PMBLDC motor drive

5.      Water pumping

SOFTWARE: MATLAB/SIMULINK

BLOCK DIAGRAM:




Fig.1 System configuration of position sensorless brushless DC motor drive operated aqua pumping

EXPECTED SIMULATION RESULT:


 


Fig.2 Solar PV Array Performance (a) Steady-state and Starting performance at 1000 W/m2 insolation (b) Dynamic performance varying from 500 W/m2 to 1000 W/m2

 



Fig. 3 BLDC motor performance at sensorless scheme(a)Zero starting and steady state performance at 1000W/m2 irradiance(b)Dynamic performance varying from 500 W/m2 to 1000 W/m2 irradiance

 

CONCLUSION:

Position sensorless control scheme of the BLDC motor has been presented for irrigation pump application. Sensorless control scheme has been justified for adverse environment application especially for rural areas. The performance of the proposed configuration has been evaluated satisfactory for water pumping application at different weather conditions.

REFERENCES:

[1] S. Jain, A. K. Thopukara, R. Karampuri and V. T. Somasekhar, “A Single-Stage Photovoltaic System for a Dual-Inverter-Fed Open-End Winding Induction Motor Drive for Pumping Applications, ” in IEEE Transactions on Power Electronics, vol. 30, no. 9, pp. 4809-4818, Sept. 2015

[2] L. An and D. D. Lu, “ Design of a Single-Switch DC/DC Converter for a PV-Battery-Powered Pump System With PFM+PWM Control, ” in IEEE Transactions on Industrial Electronics, vol. 62, no. 2, pp. 910- 921, Feb. 2015.

[3] J. V. M. Caracas, G. d. C. Farias, L. F. M. Teixeira and L. A. d. S. Ribeiro, “ Implementation of a High-Efficiency, High-Lifetime, and Low-Cost Converter for an Autonomous Photovoltaic Water Pumping System, ” in IEEE Transactions on Industry Applications, vol. 50, no. 1, pp. 631-641, Jan.-Feb. 2014.

[4] Tae-Hyung Kim and M. Ehsani, “Sensorless control of the BLDC motors from near-zero to high speeds, ” in IEEE Transactions on Power Electronics, vol. 19, no. 6, pp. 1635-1645, Nov. 2004.

[5] S. Dusmez, A. Khaligh, M. Krishnamurthy, E. Ugur and M. Uzunoglu, “Sensorless control of BLDCs for all speed ranges with minimal components, ”International Aegean Conference on Electrical Machines and Power Electronics and Electromotion, Joint Conference, Istanbul, 2011, pp. 626-631

Online Estimation Method of DC-Link Capacitors for Reduced DC-Link Capacitance IPMSM Drives

ABSTRACT:

 In order to extend the lifetime and save the system cost, the film capacitor is applied in the DC-link of IPMSM drives. Many active damping control methods have been carried out to improve the drive system stability, which need the accurate value of the DC-link film capacitor. In this letter, an online DC-link capacitance estimation method is investigated for reduced capacitance IPMSM drives, which does not need any additional signal injection or sensor. The power coupling characteristics are analyzed to obtain the instantaneous power of the DC-link capacitor from the inverter and the grid sides. The band-pass filter is applied to extract the DC-link voltage and capacitor power with twice the frequency of the grid voltage. The DC-link capacitance could be estimated by the fundamental component of the DC-link voltage. The proposed method can be used for different kinds of load types and motor types of the drive system. Experimental results are performed to verify the estimation method, and the estimation error is within 1%.

KEYWORDS:

 

1.      Online capacitance estimation

2.      Motor drive

3.      Online capacitance estimation

4.      Reduced DC-link capacitance

SOFTWARE: MATLAB/SIMULINK

BLOCK DIAGRAM:



 

Fig. 1. Block diagram of DC-link capacitance estimation.

 EXPECTED SIMULATION RESULTS:







Fig. 2. Experimental results when the motor operates at 1800rpm. (a) Waveforms of grid power, inverter power, capacitor power and its fundamental component. (b) Waveforms of the DC-link voltage, the product of DC-link voltage and its derivative, and the fundamental component of the product M. (c) Detailed waveform of the fundamental component of capacitor power, M, and the estimated DC-link capacitance.



 

Fig. 3. Experimental results when the motor operates at 4800rpm. (a) Waveforms of grid power, inverter power, capacitor power, and its fundamental component. (b) Waveforms of the DC-link voltage, the product of DC-link voltage and its derivative, and the fundamental component of the product M. (c) Detailed waveform of the fundamental component of capacitor power, M, and the estimated DC-link capacitance.



 

Fig. 4. Experimental results when the motor operates at 3000rpm and the DC-link capacitance is 59.5μF. (a) Waveforms of grid power, inverter power, capacitor power and its fundamental component. (b) Waveforms of the DC-link voltage, the product of DC-link voltage and its derivative, and the fundamental component of the product M. (c) Detailed waveform of the fundamental component of capacitor power, M, and the estimated DC-link capacitance.

  

CONCLUSION:

As for the reduced DC-link capacitance IPMSM drive system, a real-online DC-link capacitance estimation method is investigated in this letter, which does not need an additional signal injection. The power coupling characteristics are analyzed, and the instantaneous DC-link capacitor power is obtained. The DC-link capacitance could be estimated by the ratio of the fundamental component of DC-link capacitor power and that of the product between DC-link voltage and its derivative term. Moreover, the proposed method only depends on the DC-link voltage and the instantaneous DC-link capacitor power, which benefits its application in other motor type and load type reduced DC-link capacitance motor drive system. Experimental results verify the effectiveness of the proposed DC-link capacitance estimation method, which could realize the estimation precision within an error of 1% for the several tens microfarad of DC-link capacitance.

REFERENCES:

 

[1] Y. Zhang, Z. Yin, J. Liu, R. Zhang and X. Sun, “IPMSM Sensorless Control Using High-Frequency Voltage Injection Method With Random Switching Frequency for Audible Noise Improvement,” IEEE Trans. Ind. Electron., vol. 67, no. 7, pp. 6019-6030, Jul. 2020.

[2] K. Liu and Z. Zhu, “Fast Determination of Moment of Inertia of Permanent Magnet Synchronous Machine Drives for Design of Speed Loop Regulator,” IEEE Trans. Control Syst. Technol., vol. 25, no. 5, pp. 1816-1824, Sept. 2017.

[3] J. Hang, H. Wu, S. Ding, Y. Huang and W. Hua, “Improved Loss Minimization Control for IPMSM Using Equivalent Conversion Method,” IEEE Trans. Power Electron., vol. 36, no. 2, pp. 1931-1940, Feb. 2021

[4] K. Abe, H. Haga, K. Ohishi and Y. Yokokura, “Current ripple suppression control based on prediction of resonance cancellation voltage for electrolytic-capacitor-less inverter,” IEEJ J. Ind. Appl., vol. 6, no. 1, pp. 1-11, 2017.

[5] Y. Zhou, W. Huang, and F. Hong, “Single-phase input variable-speed AC motor system based on electrolytic capacitor-less single-stage boost three-phase inverter,” IEEE Trans. Power Electron., vol. 31, no. 10, pp. 7043-7052, Oct. 2016.

 

Grid-Connected Induction Motor Using a Floating DC-Link Converter Under Unbalanced Voltage Sag

ABSTRACT:

This article proposes a series compensator with unbalanced voltage sag ride-through capability applied to grid connected induction motors. A conventional three-phase voltage source inverter (VSI) is intended to regulate the motor voltages. The VSI is connected in series with the grid and a three-phase machine with open-ended windings. The proposed system is suitable for applications in which no frequency variation is required, like large pumps or fans. The VSI dc-link voltage operates as a floating capacitor through the energy minimized compensation (EMC) technique, in which there is no dc source or injection transformer. The motor load condition determines the minimum grid voltage positive component (sag severity) to keep EMC operation. Meanwhile, a voltage unbalance may increase the dc-link voltage requirements. A 1.5-hp four-pole induction motor has been used to verify the ride-through capability of the proposed compensator under grid voltage disturbances. A total harmonic distortion (THD) analysis of grid currents demonstrates that the proposed system provides low THD even if no passive filter is used. The operating principle, converter output voltage analysis, pulse width modulation technique, control strategy, and components ratings are discussed as well. Simulation and experimental results are presented to demonstrate the feasibility of the system.

KEYWORDS:

1.      Floating capacitor

2.      Induction motor

3.      Series compensator

4.      Unbalanced voltage sag

SOFTWARE: MATLAB/SIMULINK

BLOCK DIAGRAM:

  


Fig. 1. Block diagram of feedback small-signal model.

EXPECTED SIMULATION RESULTS:

Fig. 2. Simulation waveforms at the steady state and half load with perphase grid (vga ) and load (vla ) voltages, as well as the converter’s line-to-line voltage (vcab ).


Fig. 3. Simulation waveforms with the proposed series compensator under balanced voltage sag at half load. (a) Rated grid voltages. (b) Three-phase voltage sag of 80%.


Fig. 4. Simulation waveforms with the proposed series compensator under unbalanced voltage sag:Fd = 15%and half load. (a) Grid voltages and currents. (b) DC-link voltage, torque, and speed.

CONCLUSION:

The proposed system has unbalanced voltage sag ride-through capability, being suitable for grid-connected induction motors applications. Indeed, the simulation and experimental results supported the theoretical analysis. A conventional three-phase VSI using a floating dc-link capacitor has been applied as a series compensator. Besides that, the proposed system does not require any additional passive filter, injection transformer, or extra power supply. A conventional three-phase H-bridge converter to compensate balanced grid voltage disturbances has recently been proposed in the literature. Compared to the conventional solution, the proposed one has a lower number of components, a single dc link, and can deal with unbalanced voltages without a complex control strategy. The higher dc-link voltage requirement of the proposed series compensator was highlighted as its main drawback. Although the proposed solution provided higher THD of grid currents, its levels were acceptable. Hence, the proposed system can be easily integrated along with standard squirrel-cage induction motors when no frequency variation is required.

REFERENCES:

[1] H. G. Sarmiento and E. Estrada, “A voltage sag study in an industry with adjustable speed drives,” IEEE Ind. Appl. Mag., vol. 2, no. 1, pp. 16–19, Jan. 1996.

[2] K. Pietilainen, L. Harnefors, A. Petersson, and H. Nee, “DC-link stabilization and voltage sag ride-through of inverter drives,” IEEE Trans. Ind. Electron., vol. 53, no. 4, pp. 1261–1268, Jun. 2006.

[3] A. H. Bonnett and H.M. Glatt, “Ten things you should know about electric motors: Their installation, operation, and maintenance,” IEEE Ind. Appl. Mag., vol. 24, no. 6, pp. 25–36, Nov. 2018.

[4] G.C. Jaiswal, M. S. Ballal, D. R. Tutakne, and H. M. Suryawanshi, “Impact of power quality on the performance of distribution transformers: A fuzzy logic approach to assessing power quality,” IEEE Ind. Appl.Mag., vol. 25, no. 5, pp. 8–17, Sep. 2019.

[5] “IEEE Recommended Practice for Monitoring Electric Power Quality”, IEEE Std 1159-2009 (Revision of IEEE Std 1159-1995), pp. c 1–81, Jun. 2009.

Monday, 25 July 2022

Current and Speed Sensor Fault Diagnosis Method Applied to Induction Motor Drive

ABSTRACT:

The paper proposes a novel approach based on a current space vector derived from measured stator currents to diagnose speed and current sensor failures in the field-oriented control of induction motor drives. A comparison algorithm between the reference and measured rotor speed is used to detect the speed sensor faults. A counter is added to eliminate the influence of the encoder noise in the diagnosis method. In this approach, estimated quantities are not used in the proposed speed sensor fault diagnosis strategy, which increases the independence between the diagnosis stages in the fault-tolerant control (FTC) method. Moreover, in order to discriminate between the speed sensor faults and the current sensor faults, a new approach combining the current space vector and a delay function is proposed to reliably determine the current sensor failures. The MATLAB-Simulink software was used to verify the idea of the proposed method. Practical experiments with an induction motor drive controlled by DSP  were performed to demonstrate the feasibility of this method in practice. The simulation and experimental results prove the effectiveness of the proposed diagnosis method for induction motor drives.

KEYWORDS:

1.      Fault-tolerant control

2.      Diagnosis

3.       Induction motor

4.       FOC

5.      Sensorless control

SOFTWARE: MATLAB/SIMULINK

BLOCK DIAGRAM:

 

 

Figure 1. Block Diagram of FTC Unit.

 EXPECTED SIMULATION RESULTS:

 




Figure 2. Simulation Results - Speed Sensor Fault _ FTC.




Figure 3. Simulation Results _ Scaling Current Sensor Fault _ FTC.

 




 

Figure 4. Simulation Results _ Total Current Sensor Fault _ FTC.

 

CONCLUSION:

This paper presents a novel diagnosis method for the speed and current sensor fault-tolerant control of induction motor drives. The proposed method has proven its effectiveness in dealing with multi-type sensor failures. The speed sensor fault diagnosis algorithm can reliably detect the inaccuracy of the speed sensor signals without interference by random pulse noises. The loss of the current sensor signals, which is the most severe current sensor fault, is quickly detected by the delay-algorithm. Other types of current sensor failures is reliably identified without misunderstanding with a speed sensor fault. The proposed diagnosis algorithm is simpler than other existing detection methods, and thus, the computational hardware system executes faster as well as cheaper due to the lower calculation burden for the same operating conditions. The simulation and experimental results have demonstrated the efficiency of the proposed method. Further research can be implemented to improve the diagnosis of the sensor faults in transient states.

REFERENCES:

[1] A. Gouichiche, A. Safa, A. Chibani, and M. Tadjine, ``Global fault-tolerant control approach for vector control of an induction motor,'' Int. Trans. Electr. Energy Syst., vol. 30, no. 8, Aug. 2020, Art. no. e12440, doi: 10.1002/2050-7038.12440.

[2] D. Diallo, M. E. H. Benbouzid, and M. A. Masrur, ``Special section on condition monitoring and fault accommodation in electric and hybrid propulsion systems,'' IEEE Trans. Veh. Technol., vol. 62, no. 3, pp. 962_964, Mar. 2013, doi: 10.1109/TVT.2013.2245731.

[3] A. A. Amin and K. M. Hasan, ``A review of fault tolerant control systems: Advancements and applications,'' Measurement, vol. 143, pp. 58_68, Sep. 2019, doi: 10.1016/j.measurement.2019.04.083.

[4] A. Raisemche, M. Boukhnifer, C. Larouci, and D. Diallo, ``Two active fault-tolerant control schemes of induction-motor drive in EV or HEV,'' IEEE Trans. Veh. Technol., vol. 63, no. 1, pp. 19_29, Jan. 2014, doi:  10.1109/TVT.2013.2272182.

[5] Y. Azzoug, A. Menacer, R. Pusca, R. Romary, T. Ameid, and A. Ammar, ``Fault tolerant control for speed sensor failure in induction motor drive based on direct torque control and adaptive stator _ux observer,'' in Proc. Int. Conf. Appl. Theor. Electr. (ICATE), Oct. 2018, pp. 1_6.

Combined Speed and Current Terminal Sliding Mode Control with Nonlinear Disturbance Observer for PMSM Drive

ABSTRACT:

A terminal sliding mode control method based on nonlinear disturbance observer is investigated to realize the speed and current tracking control for PMSM drive system in this paper. The proposed method adopts the speed-current single-loop control structure instead of the traditional cascade control in the vector control of PMSM. Firstly, considering the nonlinear and the coupling characteristic, a single-loop terminal sliding mode controller is designed for PMSM drive system through feedback linearization technology. This method can make the motor speed and current reach the reference value in finite time, which can realize the fast transient response. Although the sliding mode control is less sensitive to parameter uncertainties and external disturbance, it may produce a large switching gain, which may cause the undesired chattering. Meanwhile, the sliding mode control cannot keep the property of invariance in the presence of unmatched uncertainties. Then, a nonlinear disturbance observer is proposed to the estimate the lump disturbance, which is used in the feed-forward compensation control. Thus, a composite control scheme is developed for the PMSM drive system. The results show that the motor control system based on the proposed method has good speed and current tracking performance and strong robustness.

KEYWORDS:

1.      PMSM drive

2.      Terminal sliding mode control

3.      Feedback linearization

4.      Nonlinear disturbance observer

SOFTWARE: MATLAB/SIMULINK

 BLOCK DIAGRAM:

 


Figure 1: Block Diagram Of PMSM Control System

 EXPECTED SIMULATION RESULTS:


 


Figure 2: The Motor Response Waveforms Of The Proposed Method: (A) Motor Speed (B) Dq-Axes Current (C) Phase Current


 

Figure 3: The Speed Waveforms Of Three Methods: (A) The Speed When The Motor Starts (B) The Speed With Load Disturbance

 


Figure 4: The Motor Waveforms With The Parameter Disturbance. (A) Motor Speed (B) Dq-Axes Current

 

 



Figure 5: The Contrastive Results With The Common Sliding Mode Control Method. (A) D-Axes Current (B) Q-Axes Current

 

CONCLUSION:

In this paper, a novel control method based on terminal sliding mode control through feedback linearization technology has been studied for PMSM drive system. The controller adopts the speed-current single-loop structure, which has the fast transient response. With the designed terminal sliding mode controller, the speed and current stabilizing control is achieved. Then, considering the lump disturbance in the drive system, a nonlinear disturbance observer is designed to deal with the mismatched disturbance, and it is used for the feed-forward compensation, and the robustness is improved effectively. Simulation results have proved that the controller has good robust performance and speed tracking performance under various conditions. But the speed and current control problems in the flux-weakening control areas are not considered at present, which will be the future research emphases.

REFERENCES:

 [1] J. Yu, P. Shi and L. Zhao, “Finite-time command filtered backstepping control for a class of nonlinear systems,” Automatica, vol. 2018, no. 92, pp. 173–180, Jun. 2018.

[2] T. Li and Y. V. Rogovchenko, “Oscillation criteria for second-order superlinear Emden–Fowler neutral differential equations,” Monatshefte f´l´zr Mathematik, vol. 184, no. 3, pp. 489–500, Apr. 2018.

[3] A. Darba, F. D. Belie and P. D. Haese, “Improved dynamic behavior in BLDC drives using model predictive speed and current control,” IEEE Trans. On Industrial Electronics, vol. 63, no. 2, pp. 728–740, Sep. 2016.

[4] X. Lang, M. Yang and J. Long, “A novel direct predictive speed and current controller for PMSM drive,” Proceedings of 8th International Power Electronics and Motion Control Conference, Hefei, China, pp. 2551–2556, May. 2016.

[5] S. Katsuji, M. Yoshitaka and I. Toshiyuki, “Singularity-free adaptive speed tracking control for uncertain permanent magnet synchronous motor,” IEEE Trans. On Power Electronics, vol. 31, no. 2, pp. 1692–1701, Apr. 2015.