asokatechnologies@gmail.com 09347143789/09949240245

Search This Blog

Thursday 18 June 2015

Simulation and Analysis of Zero Voltage Switching PWM Full Bridge Converter

Simulation and Analysis of Zero Voltage Switching PWM Full Bridge Converter

ABSTRACT:

In the conventional zero voltage switching full bridge converter the introduction of a resonant inductance and clamping diodes are introduced the voltage oscillation across the rectifier diodes is eliminated and the load range for zero-voltage switching (ZVS) achievement increases. When the clamping diode is conducting, the resonant inductance is shorted and its current keeps constant. So the clamping diode is hard turned-off, leading to reverse recovery loss if the output filter inductance is relatively larger. By introducing a reset winding in series with the resonant inductance to make the clamping diode current decay rapidly when it conducts this paper improves the full-bridge converter. The conduction losses are reduced by the use of reset winding. Also the clamping diodes naturally turn-off and avoids the reverse recovery. The proposed converter has been simulated for two different configurations and results have been compared. A 1 kW prototype converter is built to verify the operation principle and the experimental results are also demonstrated.

KEYWORDS:
1.      Clamping diodes
2.      Full bridge converter
3.      Reset winding
4.      Zero-voltage-switching (ZVS).

SOFTWARE: MATLAB/SIMULINK

CIRCUIT DIAGRAM:


Fig: 1. Tr-Lag type ZVS full bridge PWM full bridge converter


Fig:2  Tr-Lead type ZVS full bridge PWM full bridge converter


EXPECTED SIMULATION RESULTS:










    

Fig:9. Voltage Across Switch Q1 (Tr-Lead)


Fig:10. Current Through Lr (Tr-Lead)


Fig;11:Inverter output Voltage (Tr-Lead)


Fig:12. Rectifier Output Voltage (Tr-Lead)


         


CONCLUSION:
A ZVS PWM full-bridge converter is proposed in this paper, it employs an additional reset winding to make the clamping diode current decay rapidly when the clamping diode conducts, thus the conduction losses of the clamping diodes. The reset winding removes the need of auxiliary switches and the resonant inductance is reduced. The use of reset winding removes the need of hard switching for clamping diodes so there will not be any power loss due to switching of clamping diodes and the conversion efficiency will increased. In the meanwhile, the clamping diodes can be turned off naturally without reverse recovery over the whole input voltage range, and the output filter inductance can be designed to be large to obtain small current ripple, leading to reduced filter capacitance. Compared with the traditional full bridge converter, the proposed circuit provides another simple and effective approach to avoid the reverse recovery of the clamping diodes. The structure and operation of the proposed ZVS PWM full-bridge converter with reset winding topology are described and two configurations have been studied i.e. Transformer leading and Transformer-Lagging connections. We have studied the performance of both the configuration. If we compare the rectifier output in both the case we find that Tr-Lag connection produces less ripples. Transformer lagging configuration is advisable for more accurate results.

REFERENCES:
[1] B.P. Mcgrath, D.G. Holmes, McGoldrick and A.D. Mclve, “Design of a soft-switched 6-kW battery charger for traction applications,” IEEE Trans. Power Electron, vol.22,no. 4, pp. 1136-1144, Jull. 2007.
[2] J. Dudrick, P. Spanik and N.D. Trip, “Zero-voltage and zero-current switching full-bridge dc-dc converter with auxiliary transformer,” IEEE Trans. Power Electron, vol.21, no.5, pp.1328-1335, Sep. 2006.
[3] J.Zhang, X. Xie, X. Wu, G. Wu and Z. Qian, “ A novel zero-current transition full bridge dc-dc converter,” IEEE Trans. Power Electron, vol. 21, no. 2, pp. 354-360, Mar. 2006.
[4] Darlwoo Lee, Taeyoung Abu, Byungcho Choi, “A new soft switching dc-to-dc converter employing two transformer”, . PESC, pp. 1-7, June 2006.
[5] Xinyu Xu Ashwin M. Khambadkhone, Toh Meng Leong, Ramesh Oruganti, “ A 1 MHz zero-voltage switching asymmetrical half bridge dc/dc converter: analysis and design” IEEE Trans. Power Electron, vol.21, no. 1, pp. 105-113, Jan. 2006.



Wednesday 17 June 2015

Design and Simulation of Three Phase Inverter for grid connected Photovoltaic systems

ABSTRACT:
Grid connected photovoltaic (PV) systems feed electricity directly to the electrical network operating parallel to the conventional source. This paper deals with design and simulation of a three phase inverter in MATLAB SIMULINK environment which can be a part of photovoltaic grid connected systems. The converter used is a Voltage source inverter (VSI) which is controlled using synchronous d-q reference frame to inject a controlled current into the grid. Phase lock loop (PLL) is used to lock grid frequency and phase. The design of low pass filter used at the inverter output to remove the high frequency ripple is also discussed and the obtained simulation results are presented.

KEYWORDS:
1.      VSI Inverter
2.      PLL
3.      d-q reference frame
4.      Grid connected system.

SOFTWARE: MATLAB/SIMULINK
  
BLOCK DIAGRAM:

  
EXPECTED SIMULATION RESULTS:






CONCLUSION:
The design of the system is carried out for feeding 1KW power to the grid The Inverter is controlled in order to feed active power to the grid, using synchronous d-q transformation. PLL is used to lock grid frequency and phase. The phase detection part of PLL is properly done by using dq transformation in the three phase system. The FFT analysis of the inverter output current shows that the THD is within limits and the controlled injected current generates three phase balance current which controls power at the output of the transformer. To simulate the actual grid connected PV system, the PV model, dc to dc converter model and the control of the dc to dc converter should be included in place of the battery source.


REFERENCES:
[1] Soeren Baekhoej, John K Pedersen & Frede Blaabjerg, ―A Review of single phase grid connected inverter for photovoltaic modules,‖ IEEE transaction on Industry Application , Vol. 41,pp. 55 – 68, Sept 2005
[2] Milan Pradanovic& Timothy Green, ―Control and filter design of three phase inverter for high power quality grid connection, ― IEEE transactions on Power Electronics,Vol.18. pp.1- 8, January 2003
[3] C Y Wang,Zhinhong Ye& G.Sinha, ― Output filter design for a grid connected three phase inverter,‖Power electronics Specialist Conference, pp.779-784,PESE 2003
[4] Samul Araujo& Fernando Luiz, ― LCL fiter design for grid connected NPC inverters in offshore wind turbins,‖ 7th International conference on Power Electronics, pp. 1133-1138, October 2007.

[5] Frede Blaabjerg , Remus Teodorescu and Marco Liserre, ―Overview of control & grid synchronization for distributed power generation systems,‖ IEEE transaction on Industrial Electronics, Vol. 53, pp. 500 – 513,Oct- 2006 

Matlab-based Simulation & Analysis of Three level SPWM Inverter

ABSTRACT:
The multilevel began with the three level converters. The elementary concept of a multilevel converter to achieve higher power to use a series of power semiconductor switches with several lower voltage dc source to perform the power conversion by synthesizing a staircase voltage waveform. However, the output voltage is smoother with a three level converter, in which the output voltage has three possible values. This results in smaller harmonics, but on the other hand it has more components and is more complex to control. In this paper, different three level inverter topologies and SPWM technique has been applied to formulate the switching pattern for three level inverter that minimize the harmonic distortion at the inverter output. Simulation result has discussed.

KEYWORDS:
1.      SPWM
2.      THD
3.      PWM

SOFTWARE: MATLAB/SIMULINK
  

CIRCUIT DIAGRAM:




 EXPECTED SIMULATION RESULTS:






CONCLUSION:
The simulation of the inverters namely conventional three and two level inverter was carried using sinusoidal pulse width modulation (SPWM) .it has shown that decrease in voltage and current THD in moving from two level inverter to three level inverter. This paper briefly explains theory of sinusoidal pulse width modulation (SPWM) for two and three level inverter and performance of both inverters was tested using RL load. It has shown that load current for three level inverter are much more sinusoidal and improvement in the line current waveform and decrease in the THD from two level to three level inverter and decrease in the THD as the frequency is increased.

REFERENCES:
[1] J. S. Lai and F.Z. Peng “Multilevel Converters – A new breed of power converters” IEEE Trans. Ind Applicant , Vol. 32, May/June 1996.
[2] Jose Roderiguez, Jih-Sheng Lai and Fang Zheng Reng, “Multilevel Inverters” A survey of topologies ,control, and applications “,IEEE Trans. On Ind.Electronics, vol No.[4], August 2002.
[3] A. Nabae, I Takashashi, and H. Akagi, “ A new neutral –point clamped PWM inverter,” IEEE Trans. Ind Application Vol. No. IA-17,PP 518-523,Sept/oc 1981.
[4] P.K.Chaturvedi, S. Jain, Pramod Agrawal “ Modeling , Simulation and Analysis of Three level Neutral Point CLAMPED inverter using matlab/Simulink/Power System Blockst”
[5] Bor-Ren Lin & Hsin – Hung Lu “ A Novel Multilevel PWM Control Scheme of the AC/DC/AC converter for AC Drives”IEEE Trans on ISIE, 1999.

ANALYSIS OF DISCRETE & SPACE VECTOR PWM CONTROLLED HYBRID ACTIVE FILTERS FOR POWER QUALITY ENHANCEMENT

ABSTRACT:
It is known from the fact that Harmonic Distortion is one of the main power quality problems frequently encountered by the utilities. The harmonic problems in the power supply are caused by the non-linear characteristic based loads. The presence of harmonics leads to transformer heating, electromagnetic interference and solid state device mal-functioning. Hence keeping in view of the above concern, research has been carried out to mitigate harmonics. This paper presents an analysis and control methods for hybrid active power filter using Discrete Pulse Width Modulation and Space Vector Pulse Width Modulation (SVPWM) for Power Conditioning in distribution systems. The Discrete PWM has the function of voltage stability, and harmonic suppression. The reference current can be calculated by ‘d-q’ transformation. In SVPWM technique, the Active Power Filter (APF) reference voltage vector is generated instead of the reference current, and the desired APF output voltage is generated by SVPWM. The THD will be decreased significantly by SVPWM technique than the Discrete PWM technique based Hybrid filters. Simulations are carried out for the two approaches by using MATLAB, it is observed that the %THD has been improved from 1.79 to 1.61 by the SVPWM technique.


KEYWORDS:
     1.      Discrete PWM Technique
    2.      Hybrid Active Power Filter
    3.      Reference Voltage Vector, Space Vector
    4.      Pulse Width Modulation (SVPWM)
    5.      Total Harmonic Distortion (THD)
    6.      Voltage Source Inverter (VSI).

SOFTWARE: MATLAB/SIMULINK

BLOCK DIAGRAM:


 SIMULATION BLOCK DIAGRAM:


 EXPECTED SIMULATION RESULTS:

Figure 4. Simulation results of balanced linear load (a) The phase-A supply voltage and load current waveforms (b) The phase-A supply voltage and supply current waveforms

Figure 5. Simulation results of unbalanced linear load (a) Three-phase load current waveforms (b) Three-phase supply current waveforms

Figure 6. Simulation results of non-linear load (a) The three-phase source voltage waveforms (b) The three-phase load current waveforms (c) The three-phase source current waveforms


Figure 7. Harmonic spectrum of non-linear load (a) The phase-A load current harmonic spectrum (b) The phase-A source current harmonic spectrum

CONCLUSION:
In this paper, a control methodology for the APF using Discrete PWM and SVPWM is proposed. These methods require a few sensors, simple in algorithm and are able to compensate harmonics and unbalanced loads. The performance of APF with these methods is done in MATLAB/SIMULINK. The algorithm will be able to reduce the complexity of the control circuitry. The harmonic spectrum under non-linear load conditions shows that reduction of harmonics is better. Under unbalanced linear load, the magnitude of three-phase source currents are made equal and also with balanced linear load the voltage and current are made in phase with each other. The simulation study of two level inverter is carried out using SVPWM because of its better utilization of DC bus voltage more efficiently and generates less harmonic distortion in three-phase voltage source inverter. This SVPWM control methodology can be used with series APF to compensate power quality distortions. From the simulated results of the filtering techniques, it is observed that Total Harmonic Distortion is reduced to an extent by the SVPWM Hybrid filter when compared to the Discrete PWM filtering technique i.e. from 1.78% to 1.61%.

REFERENCES:
[1] EI-Habrouk. M, Darwish. M. K, Mehta. P, “Active Power Filters-A Rreview,” Proc.IEE-Elec. Power Applicat., Vol. 147, no. 5, Sept. 2000, pp. 403-413.
[2] Akagi, H., “New Trends in Active Filters for Power Conditioning,” IEEE Trans. on Industry applications, Vol. 32, No. 6, Nov-Dec, 1996, pp. 1312-1322.
[3] Singh.B, Al-Haddad.K, Chandra.A, “Review of Active Filters for Power Quality Improvement,” IEEE Trans. Ind. Electron., Vol. 46, No. 5, Oct, 1999, pp. 960-971.

Thursday 4 June 2015

Micro-grid System Based on Renewable Power Generation Units


ABSTRACT:

Micro-grid system is currently a conceptual solution to fulfil the commitment of reliable power delivery for future power systems. Renewable power sources such as wind and hydro offer the best potential for emission free power for future micro-grid systems. This paper presents a micro-grid system based on wind and hydro power sources and addresses issues related to operation, control, and stability of the system. The micro-grid system investigated in this paper represents a case study in Newfoundland, Canada. It consists of a small hydro generation unit and a wind farm that contains nine variable speed, double-fed induction generator based wind turbines. Using Matlab/Simulink, the system is modelled and simulated to identify the technical issues involved in the operation of a micro-grid system based on renewable power generation units. The operational modes, technical challenges and a brief outline of conceptual approaches to addressing some of the technical issues are presented for further investigation.

KEYWORDS:
1.      Renewable power generation
2.      Distributed generation
3.     Micro-grid, Simulation.


SOFTWARE: MATLAB/SIMULINK

BLOCK DIAGRAM:



Fig. 1. The micro-grid system currently under investigation




EXPECTED SIMULATION RESULTS:



                            Fig. 2. (a) Wind speed profile, (b) WPGS output power, (c) HGU output power, (d) Voltage at bus 1



                    Fig. 3. (a) Micro-grid frequency (Hz), (b) WPGS output power, (c) HGU output power, (d) Voltage at bus 1


                    Fig. 4. (a) Micro-grid frequency (Hz), (b) WPGS output power, (c) HGU output power, (d) Voltage at bus 1
             

CONCLUSION:
Micro-grid operation of a system based on renewable power generation units is presented in this paper. The system behavior and technical issues involved with three operational modes in micro grid scheme are identified and discussed. The investigation is performed based on simulation results using Matlab/Simulink software package. Simulation results indicate that dump load and suitable storage system along with proper control scheme are additionally required for the operation of the study system in a micro-grid scheme. A control coordinator and monitoring system is also required to monitor micro-grid system state and decide the necessary control action for an operational mode. The required control schemes development for the proposed micro-grid system is currently under investigation by the authors.

REFERENCES:
[1] T. Ackermann and V. Knyazkin, “Interaction between distributed generation and the distribution network: Operation aspects”, Second Int. Symp. Distributed Generations: Power System Market Aspects, Stockholm, Sweden, 2002.
[2] C. Abbey, F. Katiraei, C. Brothers, “Integration of distributed generation and wind energy in Canada”, Invited paper IEEE Power Engineering Society General Meeting and Conference, Montreal, Canada, June 18-22, 2006.
[3] Frede Blaabjerg, Remus Teodorescu, Marco Liserre, Adrian V. Timbus, “Overview of control and grid synchronization for distributed power generation systems”, IEEE Transactions on Industrial Electronics, Vol. 53, No. 5,October 2006.
[4] F. Katiraei, C. Abbey, Richard Bahry, “Analysis of voltage regulation problem for 25kV distribution network with distributed generation”, IEEE Power Engineering Society General Meeting, Montreal, 2006.           
[5] R. H. Lasseter, “Microgrids (distributed power generation)”, IEEE Power Engineering Society Winter Meeting, Vol. 01, pp. 146-149, Columbus, Ohio, Feb 2001.



Wednesday 3 June 2015

Performance comparison of SVC and SSSC with POD controller for Power System Stability



ABSTRACT:

 Steady state and transient problems in a power system have undesirable consequences on the system. It can limit the amount of power that can be transmitted in the system and consequently leads to voltage instability and at times it may also result into total voltage collapse.The main objective of this paper is a comparative investigate in enhancement of volatge stability via static synchronous series compensator (SSSC) and static var compensator (SVC) externally controlled by a POD controller. The new designed P.O.D controller is very efficient for voltage stability under transient conditions. This paper discusses and demonstrates the comparision between the SVC with P.O.D controller and SSSC with P.O.D controller,applied to power system for effectively regulating system voltage for different types of faulted condition. One of the major reasons for installing a SVC is to improve dynamic voltage control and thus increase system load ability during transient condition. This work is presented to present the transmission line voltage stability & machine oscillation damping stability by using SVC & SSSC with POD controller & compared their performance to enhance the stability of a power system. Simulation results shows that SVC with POD controller is more effective to enhance the voltage stability and increase transmission capacity in a power system.


KEYWORDS:

1.      FACTS
2.      Power system
3.       POD Controller
4.      SVC(Static VAR compensator)
5.      SSSC(static synchronous series compensator)
6.      Voltage Stability.

SOFTWARE: MATLAB/SIMULINK

BLOCK DIAGRAM:



Fig.1 Single line diagram of a 2-machine power system


 SIMULATION DIAGRAM:



Fig. 2 Simulation Diagram of the SSSC


Fig. 3 Simulation Diagram of SVC Controller


EXPECTED SIMULATION RESULTS:



Fig. 4(a) Simulation Results of SSSC without POD





Fig. 4(b) Simulation Results of SSSC without POD






Fig. 5(a) Simulation Results of SSSC with POD


Fig. 5(b) Simulation Results of SSSC with POD




Fig. 6 Simulation results of SVC Controller



  

 Fig. 7(a) Bus voltages in p.u for 1-phase fault (without SVC)

                     

Fig. 7(b) Bus Voltages in p.u for 1-phase fault (with  SVC)
   

             
CONCLUSION:
This paper explains, the FACTS controllers that are used to mitigate the power quality problems. The standard FACTS controller for a particular type of problem is also given. The simulation results give the clear observation of how the FACTS devices improve the power quality. The simulation work is done on Static Var Compensator (SVC) and Static Synchronous Series Compensator(SSSC).SVC and SSSC are providing better power quality under variation of source voltage and when the system is suddenly loaded. The thesis includes the simulation results of the SVC and SSSC only. The future work given as the simulation results of the systems for various power quality problems with all remaining FACTS devices. Then it can be very easy to find an exact FACTS device for a particular type of power quality problem. Installations of SSSC and SVC controllers at all suitable locations will naturally improve the voltage stability of a power system. But, keeping in mind, the cost of the controllers and the optimization task, the number of controllers and their sizes are minimized. Taking corrective actions to keep the system voltage secured under all possible line outage contingency will not be economical or it may not be necessary. Therefore, only the most critical line outage contingency is considered. The line outage is ranked according to the severity and the severity is taken on the basis of increased reactive power generation and real power losses. Outage of other lines has no much impact on the system and therefore they are not given importance.

REFERENCES:
[1] Molina, M.G. and P. E. Mercado, “Modeling of a Static Synchronous Compensator with Superconducting Magnetic Energy Storage for Applications on Frequency Control”, Proc. VIII SEPOPE, Brasilia, Brazil, 2002, pp. 17-22.
 [2] Molina, M.G. and P. E. Mercado, “New Energy Storage Devices for Applications on Frequency Control of the Power System using FACTS Controllers,” Proc. X ERLAC, Iguazú, Argentina, 14.6, 2003, 1-6.
 [3] Molina, M.G. and P. E. Mercado, “Evaluation of Energy Storage Systems for application in the Frequency Control”, Proc. 6th COBEP, Florianópolis, Brazil, 2001, pp. 479-484.
[4] M. Noroozian, L. Angquist, M. Ghandhari, G. Andersson,1997, “Use of UPFC for Optimal Power Flow Control,” IEEE Transactions on Power Delivery, 12(4), pp. 1629-1634.
[5] M. Ghandhari, G. Andersson, I.A. Hiskens, 2001, “Control Lyapunov Functions for Series Devices,” IEEE Transactions on Power Delivery, 16(4), pp. 689-694.