asokatechnologies@gmail.com 09347143789/09949240245

Search This Blog

Thursday, 6 April 2017

Hybrid-Type Full-Bridge DC/DC Converter With High Efficiency


ABSTRACT:
This paper presents a hybrid-type full-bridge dc/dc converter with high efficiency. Using a hybrid control scheme with a simple circuit structure, the proposed dc/dc converter has a hybrid operation mode. Under a normal input range, the proposed converter operates as a phase-shift full-bridge series-resonant converter that provides high efficiency by applying soft switching on all switches and rectifier diodes and reducing conduction losses. When the input is lower than the normal input range, the converter operates as an active-clamp step-up converter that enhances an operation range. Due to the hybrid operation, the proposed converter operates with larger phase-shift value than the conventional converters under the normal input range. Thus, the proposed converter is capable of being designed to give high power conversion efficiency and its operation range is extended. A 1-kW prototype is implemented to confirm the theoretical analysis and validity of the proposed converter.
KEYWORDS:

1.      Active-clamp circuit
2.      Full-bridge circuit
3.      Phase shift control.

SOFTWARE: MATLAB/SIMULINK


CIRCUIT DIAGRAM:



 Fig. 1. Circuit diagram of the proposed hybrid-type full-bridge dc/dc converter.


 EXPECTED SIMULATION RESULTS:



Fig. 2. Experimental waveforms for the gate signals and output voltage according to the operation mode. (a) PSFB series-resonant converter mode when Vd = 350 V. (b) Active-clamp step-up converter when Vd = 250 V.


Fig. 3. Experimental waveforms for soft switching in the PSFB series resonant converter mode. (a) ZVS turn-on of S1 . (b) ZVS turn-on and ZCS turn-off of S2


.

Fig. 4. Experimental waveforms for the current stress when Vd = 350 V. (a) Conventional PSFB series-resonant converter. (b) Proposed converter.



Fig. 5. Experimental waveforms for the input voltage Vd and output voltage Vo in the transition-state.

CONCLUSION:

The novel hybrid-type full-bridge dc/dc converter with high efficiency has been introduced and verified by the analysis and experimental results. By using the hybrid control scheme with the simple circuit structure, the proposed converter has both the step-down and step-up functions, which ensure to cover the wide input range. Under the normal input range, the proposed converter achieves high efficiency by providing soft switching technique to all the switches and rectifier diodes, and reducing the current stress. When the input is lower than the normal input range, the proposed converter provides the step-up function by using the active-clamp circuit and voltage doubler, which extends the operation range. To confirm the validity of the proposed converter, 1 kW prototype was built and tested. Under the normal input range, the conversion efficiency is over 96% at full-load condition, and the input range from 250 to 350 V is guaranteed. Thus, the proposed converter has many advantages such as high efficiency and wide input range.

REFERENCES:

[1] J. A. Sabat´e, V. Vlatkovic, R. B. Ridley, F. C. Lee, and B. H. Cho, “Design considerations for high-voltage high-power full-bridge zero-voltage switching PWM converter,” in Proc. Appl. Power Electron. Conf., 1990, pp. 275–284.
[2] I. O. Lee and G. W. Moon, “Phase-shifted PWM converter with a wide ZVS range and reduced circulating current,” IEEE Trans. Power Electron., vol. 28, no. 2, pp. 908–919, Feb. 2013.
[3] Y. S. Shin, S. S. Hong, D. J. Kim, D. S. Oh, and S. K. Han, “A new changeable full bridge dc/dc converter for wide input voltage range,” in Proc. 8th Int. Conf. Power Electron. ECCE Asia, May 2011, pp. 2328–2335.
[4] P. K. Jain, W., Kang, H. Soin, and Y. Xi, “Analysis and design considerations of a load and line independent zero voltage switching full bridge dc/dc converter topology,” IEEE Trans. Power Electron., vol. 17, no. 5, pp. 649–657, Sep. 2002.

[5] I. O. Lee and G. W. Moon, “Soft-switching DC/DC converter with a full ZVS range and reduced output filter for high-voltage application,” IEEE Trans. Power Electron., vol. 28, no. 1, pp. 112–122, Jan. 2013.