asokatechnologies@gmail.com 09347143789/09949240245

Search This Blog

Friday 14 June 2019

Control and Implementation of a Standalone Solar Photo-Voltaic Hybrid System



ABSTRACT:  

 A control algorithm for a standalone solar photovoltaic (PV)-diesel-battery hybrid system is implemented in this paper. The proposed system deals with the intermittent nature of the energy generated by the PV array and it also provides power quality improvement. The PV array is integrated through a DC-DC boost converter and controlled using a maximum power point tracking (MPPT) algorithm to obtain the maximum power under varying operating conditions. The battery energy storage system (BESS) is integrated to the diesel engine generator (DG) set for the coordinated load management and power flow within the system. The admittance based control algorithm is used for load balancing, harmonics elimination and reactive power compensation under three phase four-wire linear and nonlinear loads. A four-leg voltage source converter (VSC) with BESS also provides neutral current compensation. The performance of proposed standalone hybrid system is studied under different loading conditions experimentally on a developed prototype of the system.
KEYWORDS:

1.      Admittance based control algorithm
2.      BESS
3.      DG set
4.      Four-leg VSC
5.      Neutral current compensation
6.      Power quality
7.      Solar photovoltaic array
8.      Standalone system

SOFTWARE: MATLAB/SIMULINK
CIRCUIT DIAGRAM:


Fig. 1. Schematic diagram of the proposed system


EXPECTED SIMULATION RESULTS:




Fig.2 Performance of proposed system under unbalance nonlinear load

CONCLUSION:

The admittance based control technique has been used for a PV-diesel-battery hybrid system for an uninterrupted power supply and power quality improvement. The incremental based MPPT algorithm has delivered maximum solar array power under varying conditions of temperature and insolation radiation. The technique has been demonstrated to eliminate harmonics, load balancing and to provide neutral current compensation by incorporating four-leg VSC in the system. The PCC voltage and frequency have been maintained constant. Satisfactory performance of the system has been observed through test results obtained for steady state and dynamic conditions under both linear/nonlinear loads.
REFERENCES:
[1] Z. Jiang, “Power Management of Hybrid Photovoltaic-Fuel Cell Power Systems”, Proc. of IEEE Power Engg. Society General Meeting, Montreal Quebec, Canada, 2006.
[2] A. Naik, R.Y. Udaykumar and V. Kole, “Power management of a hybrid PEMFC-PV and Ultra capacitor for stand-alone and grid connected applications”, Proc. of IEEE Int. Conf. Power Electron. Drives and Energy Sys. (PEDES), 2012, pp. 1-5.
[3] J. Philip, C. Jain, , K. Kant, B. Singh, S. Mishra, A. Chandra and K. Al- Haddad “Control and implementation of a standalone solar photo-voltaic hybrid system”, Proc. of IEEE Industry Applications Society Annual Meeting, Addison, TX, 18- 22 Oct. 2015, pp.1-8.
[4] J. Philip, B. Singh and S. Mishra, “Design and operation for a standalone DG-SPV-BES microgrid system”, Proc. of 6thIEEE Power India Int. Conf. (PIICON), Delhi, 5-7 Dec, 2014, pp.1-6.