asokatechnologies@gmail.com 09347143789/09949240245

Search This Blog

Friday 20 November 2020

Power quality enhancement in solar power with grid connected system using UPQC

 ABSTRACT:

 The need to generate pollution free energy has triggered the effect towards the usage of solar energy interconnection with the grid. Consequently, the Photovoltaic (PV) panel interfaced with the grid causes the power quality problems such as a voltage harmonics and voltage distortion etc., Active power filters are the powerful tool for mitigation of harmonics. This work involves the use of single-phase Unified Power Quality Conditioner (UPQC) based on a unit vector template control algorithm for its functions with grid integration of photovoltaic, such as voltage sags/ swell, unit power factor correction, voltage and current harmonic cancelation. The unit vector template control algorithm includes a phase-locked loop (PLL) mechanism that is responsible for avoiding multiple zero crossings during highly distorted grid voltage detection. A unit vector template control with a PLL-based control algorithm is applied to the shunt and series inverters of PV grid connected UPQC. In addition to normalizing voltage and current disturbances, the proposed controller has the functions of phase detection and perfect grid synchronization. It is proposed that the system performance is fully verified by MATLAB simulation with the response of load variation, transient response, THD, voltage swell and sag. The Total Harmonic Distortions (THDs) of proposed grid integration of photovoltaic systems through single-phase unified power quality conditioner (UPQC) obtain the range of IEEE standard.

KEYWORDS:

 

1.      Maximum power point tracking

2.      Phase locked loop

3.      Photovoltaic

4.      Grid tie inverter

SOFTWARE: MATLAB/SIMULINK

BLOCK DIAGRAM:

 

Fig. 1. Proposed UPQC with Solar Grid Connected System.

EXPECTED SIMULATION RESULTS:

 


Fig. 2. Simulation result of PV.


Fig. 3. Output Voltage of Boost Converter.


Fig. 4. PV- Inverter Voltage Response.


Fig. 5. DC-Link Voltage of UPQC.



Fig. 6. Voltage Sag and swell compensation. 

 

Fig. 7. Source current.


Fig. 8. THD response Without UPQC system.




Fig. 9. THD response of Proposed System.



 

Fig. 10. Performance Comparison of MPPT.

CONCLUSION:

In this work presents, a single phase grid connected PV system. Although the system is designed to run smoothly on the unity power factor to enable efficient use of full inverter capacity, it runs on any desired power. Using the Perturb & Observe (P&O) algorithm to ensure MPPT performance, it can smoothly track changes in sunlight without oscillation. The simulation and test results show a very good match. The investigation will cover the MPPT technique, voltage control and current control of the system. The proposed unit vector template matching with UPQC gives the best results against all parameters, for example output of solar cell per unit is 0.94, steady state error 8%, and MPPT efficiency 96.56% and THD is 4.66%.In this study, UPQC developed a hysteresis controller based on a single phase UVTG approach and simulated three cases of voltage sag/swell, unity power factor correction, voltage and current synchronization. The Total Harmonic Distortions (THDs) of proposed grid integration of photovoltaic systemsalong with single-phase unified power quality conditioner (UPQC) obtain the range of IEEE standard because the THD is less than 5%.

Declaration of Competing Interest

The outcomes demonstrate that proposed unit vector template matching with UPQC gives the best results against all parameters, for example output of each solar cell per unit is 0.94, steady state error 8%, and MPPT efficiency 94.92% and THD is 4.66%. In this study, UPQC developed a hysteresis controller based on a single phase UVTG approach and simulated three cases of voltage sag/swell, unity power factor correction, voltage and current synchronization. Simulation results show satisfactory behavior in steady state, and dynamic conditions such as load variation in sunlight, voltage sags, swell and THD. The Total

Harmonic Distortions (THDs) of proposed grid integration of photovoltaic systems through single-phase unified power quality conditioner (UPQC) found within limits of the IEEE standard because the THD is less than 5%.

REFERENCES:

[1] S. Kr. Tiwari, B. Singh, P.K. Goel, Design and control of micro-grid fed by renewable energy generating sources, IEEE Trans. Ind. Appl. (2018) 1, https://doi. org/10.1109/TIA.2018.2793213, 1.

[2] Z. Zaheeruddin, M. Manas, Renewable energy management through microgrid central controller design: an approach to integrate solar, wind and biomass with battery, Energy Rep. 1 (2015) 156–163, https://doi.org/10.1016/j. egyr.2015.06.003.

[3] Y.V. Pavan Kumar, B. Ravikumar, Renewable energy based micro grid system sizing and energy management for green buildings, J. Mod. Power Syst. Clean Energy 3 (March 1) (2015) 1. -1.

[4] G. Rizzo, Automotive applications of solar energy, IFAC Proceed. Vol. 43 (July 7) (2010) 174–185.

[5] R. OctaPratama, M. Effendy, Z. Has, Optimization maximum power point tracking (MPPT) using P&O-fuzzy and IC-fuzzy in photovoltaic, Kinetik 3 (2018), https:// doi.org/10.22219/kinetik.v3i2.200.