asokatechnologies@gmail.com 09347143789/09949240245

Search This Blog

Friday 22 December 2017

An Adjustable-Speed PFC Bridgeless Buck–Boost Converter-Fed BLDC Motor Drive


ABSTRACT:

This paper presents a power factor corrected (PFC) bridgeless (BL) buck–boost converter-fed brushless direct current (BLDC) motor drive as a cost-effective solution for low-power applications. An approach of speed control of the BLDC motor by controlling the dc link voltage of the voltage source inverter (VSI) is used with a single voltage sensor. This facilitates the operation of VSI at fundamental frequency switching by using the electronic commutation of the BLDC motor which offers reduced switching losses. A BL configuration of the buck–boost converter is proposed which offers the elimination of the diode bridge rectifier, thus reducing the conduction losses associated with it. A PFC BL buck–boost converter is designed to operate in discontinuous inductor current mode (DICM) to provide an inherent PFC at ac mains. The performance of the proposed drive is evaluated over a wide range of speed control and varying supply voltages (universal ac mains at 90–265 V) with improved power quality at ac mains. The obtained power quality indices are within the acceptable limits of international power quality standards such as the IEC 61000-3-2. The performance of the proposed drive is simulated in MATLAB/Simulink environment, and the obtained results are validated experimentally on a developed prototype of the drive.

KEYWORDS:
1.      Bridgeless (BL) buck–boost converter
2.      Brushless direct current (BLDC) motor
3.       Discontinuous inductor current mode (DICM)
4.       Power factor corrected (PFC)
5.      Power quality
SOFTWARE: MATLAB/SIMULINK

CIRCUIT DIAGRAM:




Fig. 1. Proposed BLDC motor drive with front-end BL buck–boost converter.


EXPECTED SIMULATION RESULTS:



Fig. 2. Steady-state performance of the proposed BLDC motor drive at rated conditions.

Fig. 3. Harmonic spectra of supply current at rated supply voltage and rated
loading on BLDC motor for a dc link voltage of (a) 200 V and (b) 50 V.


Fig. 4. Dynamic performance of proposed BLDC motor drive during (a) starting, (b) speed control, and (c) supply voltage variation at rated conditions.


Fig. 5. Harmonic spectra of supply current at rated loading on BLDC motor
with dc link voltage as 200 V and supply voltage as (a) 90 V and (b) 270 V.





Fig. 6. Steady-state performance of the proposed BLDC motor drive at rated
conditions with dc link voltage as (a) 200 V and (b) 50 V.


CONCLUSION:

A PFC BL buck–boost converter-based VSI-fed BLDC motor drive has been proposed targeting low-power applications. A new method of speed control has been utilized by controlling the voltage at dc bus and operating the VSI at fundamental frequency for the electronic commutation of the BLDC motor for reducing the switching losses in VSI. The front-end BL buck–boost converter has been operated in DICM for achieving an inherent power factor correction at ac mains. A satisfactory performance has been achieved for speed control and supply voltage variation with power quality indices within the acceptable limits of IEC 61000-3-2. Moreover, voltage and current stresses on the PFC switch have been evaluated for determining the practical application of the proposed scheme. Finally, an experimental prototype of the proposed drive has been developed to validate the performance of the proposed BLDC motor drive under speed control with improved power quality at ac mains. The proposed scheme has shown satisfactory performance, and it is a recommended solution applicable to low-power BLDC motor drives.

REFERENCES:

[1] C. L. Xia, Permanent Magnet Brushless DC Motor Drives and Controls. Hoboken, NJ, USA: Wiley, 2012.
[2] J. Moreno, M. E. Ortuzar, and J. W. Dixon, “Energy-management system for a hybrid electric vehicle, using ultracapacitors and neural networks,” IEEE Trans. Ind. Electron., vol. 53, no. 2, pp. 614–623, Apr. 2006.
[3] Y. Chen, C. Chiu, Y. Jhang, Z. Tang, and R. Liang, “A driver for the singlephase brushless dc fan motor with hybrid winding structure,” IEEE Trans. Ind. Electron., vol. 60, no. 10, pp. 4369–4375, Oct. 2013.
[4] X. Huang, A. Goodman, C. Gerada, Y. Fang, and Q. Lu, “A single sided matrix converter drive for a brushless dc motor in aerospace applications,” IEEE Trans. Ind. Electron., vol. 59, no. 9, pp. 3542–3552, Sep. 2012.

[5] H. A. Toliyat and S. Campbell, DSP-Based Electromechanical Motion Control. Boca Raton, FL, USA: CRC Press, 2004.

A Torque Ripple Suppression Circuit for Brushless DC Motors based on Power DC/DC Converters


ABSTRACT:
This paper demonstrates a method of using a DC-DC boost conversion circuit to suppress the commutation torque ripple of a brushless DC (BLDC) motor with rectangular flux distribution. The commutation torque of a BLDC motor is depending on the commutation transient line current. To calculate the line current accurately, the phase resistance is taken into account, and the phase currents rising and falling speed are compared. Furthermore, it is proved that the line current will maintain constant if the DC voltage is lifted in the commutation period. The desired voltage is even higher than the supplied DC link voltage, if the back EMF is higher than two fifths of the input DC voltage. A super-lift Luo-converter is employed to increase the input voltage. The required waveform of the transient voltage is accomplished by changing the parameters of the power DC/DC converter based on the mathematical modeling for the proposed circuit. And the torque ripple is under control. The control stratagem for the torque ripple suppression is described in the paper and its reliability is testified by the simulation and experiment results.

KEYWORDS:

 

1.      Brushless DC (BLDC) motor
2.      Torque ripple
3.      Super-lift Luo-converter
4.      Mathematical modeling
5.      Commutation current
SOFTWARE: MATLAB/SIMULINK

CIRCUIT DIAGRAM:


Fig. 1. A typical BLDC drive system.

 EXPECTED SIMULATION RESULTS:


Fig. 2. Simulated DC link current of the proposed BLDC drive system.

Fig. 3. Measured DC link current of a typical BLDC drive system.

Fig. 4. Measured DC link current of the proposed BLDC drive system.
REFERENCES:
[1] R Carlson, M Lajoie-Mazenc, J Fagundes. Analysis of torque ripple due to phase commutation in Brushless DC machines[J]. IEEE Trans. Ind.Applicat., 1992, 28: 632-638.
[2] Y Murai, Y Kawase, K Ohashi, et al. Torque ripple improvements for brushless DC miniature motors[J]. IEEE Transactions on Industry Applications, 1989, 25(3): 441-450.
[3] Liu Yong, Zhu Z Q and David H, “Commutation-Torque-Ripple Minimization in Direct-Torque-Controlled PM Brushless DC Drives,” IEEE Trans on Industry Applications, vol.43, pp.1012-1021, July 2007.
[4] Zhang Xiaofeng and Lu Zhengyu, “A New BLDC Motor Drives Method Based on BUCK Converter for Torque Ripple Reduction,” IEEE 5th International Conf. on Power Electronics and Motion Control, vol. 2, pp. 1-4, August 2006.

[5] Ki-Yong Nam, Woo-Taik Lee, Choon-Man Lee and Jung-Pyo Hong, “Reducing torque ripple of brushless DC motor by varying input voltage,” IEEE Trans. on Magnetics, vol.42, pp. 1307 – 1310, April 2006.

Thursday 21 December 2017

A New BLDC Motor Drives Method Based on BUCK Converter for Torque Ripple Reduction


ABSTRACT:
This paper presents a comprehensive analysis on torque ripples of brushless dc motor drives in conduction region and commutation region. A novel method for reducing the torque ripple in brushless dc motors with a single current sensor has been proposed by adding BUCK converter in the front of 3-phase inverter.In such drives, torque ripple suppression technique is theoretically effective in commutation region as well as conduction region. Effectiveness and feasibility of the proposed control method is verified through experiments.

KEYWORDS:

1.      Brushless dc motor
2.      Torque ripple
3.      Conduction region
4.      Commutation region

SOFTWARE: MATLAB/SIMULINK

CIRCUIT DIAGRAM:


Fig1. The new proposed circuit configuration

EXPECTED SIMULATION RESULTS:


Fig.2. The 2-phase current-waveforms of conventional modulation mode


Fig.3. The 2-phase current-waveforms of new proposed modulation mode




Fig.4.The commutation current-waveforms of conventional modulation mode


Fig.5.The commutation current-waveforms of new proposed modulation mode

CONCLUSION:
In this paper,a new torque ripple reduction method based on buck converter has been proposed for brushless dc motor drives using a single dc current sensor. In such control method, the dc-link current sensor can give correct information corresponding to the motor phase currents to eliminate torque ripples in conduction region. Meanwhile, torque ripples have been attenuated effectively during commutation region. Subsequently effectiveness and feasibility of the proposed control method are verified through experiments.
REFERENCES:
[1] Joong-Ho Song and Ick Choy, “Commutation torque ripple reduction in brushless DC motor drives using a single DC current sensor,”IEEE Trans. on Power Electronics,vol. 19, No.2 ,pp.312-319,March 2004.
[2] Byoung-Hee Kang,Choel-Ju Kim,Hyung-Su Mok and Gyu-Ha Choe, “Analysis of torque ripple in BLDC motor with commutation time,”Proceedings of IEEE,vol.2,pp.1044-1048, June 2001.
[3] Carlson R,Lajoie-Mazenc M and Fagundes J.C.d.S, “Analysis of torque ripple due to phase communtation in brushless DC machines,”IEEE Trans. on Industry Applications,vol.28,no.3, pp.632-638,May-June 1992.
[4] Luk P.C.K and Lee C.K, “Efficient modeling for a brushless DC motor drive,”International Conference on Industrial Electronics,Control and Instrumentation,vol.1,pp.188-191, September 1994.

[5] Lei Hao,Toliyat,H.A, “BLDC motor full speed range operation including the flux-weakening region,”IEEE-IAS Annual Meeting,vol.1,pp.618-624, Octorber 2003.

A New Approach to Sensorless Control Method for Brushless DC Motors


ABSTRACT:
This paper proposes a new position sensorless drive for brushless DC (BLDC) motors. Typical sensorless control methods such as the scheme with the back-EMF detection method show high performance only at a high speed range because the magnitude of the back-EMF is dependent upon the rotor speed. This paper presents a new solution that estimates the rotor position by using an unknown input observer over a full speed range. In the proposed method, a trapezoidal back-EMF is modelled as an unknown input and the proposed unknown input observer estimating a line-to-line back-EMF in real time makes it possible to detect the rotor position. In particular, this observer has high performance at a low speed range in that the information of a rotor position is calculated independently of the rotor speed without an additional circuit or complicated operation process. Simulations and experiments have been carried out for the verification of the proposed control scheme.

KEYWORDS:

1.      BLDC motor
2.      Full speed range
3.      Sensorless control
4.      Unknown input observer

SOFTWARE: MATLAB/SIMULINK

 BLOCK DIAGRAM:



Fig. 1. Overall structure of the proposed sensorless drive system.


 EXPECTED SIMULATION RESULTS:




Fig. 2. Response waveforms at under step change of load torque. (Speed reference: 50 rpm, Load: 0.2 → 0.5 Nm).



Fig. 3. Response waveforms under step change of load torque. (Speed reference: 1650 rpm, Load: 0.75 → 1.5 Nm).



Fig. 4. Response waveforms under step change of speed reference. (Load: 0.75 Nm, Speed reference: 50 → 1650 → 50 rpm).

CONCLUSION:
This paper presented a new approach to the sensorless control of the BLDC motor drives using the unknown input observer. This observer can be obtained effectively by using the equation of augmented system and an estimated line-to-line back- EMF that is modelled as an unknown input. As a result, the actual rotor position as well as the machine speed can be estimated strictly even in the transient state from the estimated line-to-line back-EMF.
The novel sensorless method using an unknown input observer can
·          be achieved without additional circuits.
·         estimate a rotor speed in real time for precise control.
·         make a precise commutation pulse even in transient state as well as in steady state.
·         detect the rotor position effectively over a full speed range, especially at a low speed range.
·         calculate commutation function with a noise insensitive.
·         be easily realized for industry application by simple control algorithm.
The simulation and experimental results successfully confirmed the validity of the developed sensorless drive technique using the commutation function.
REFERENCES:
[1] N. Matsui, “Sensorless PM brushless DC motor drives,” IEEE Trans. on Industrial Electronics, vol. 43, no. 2, pp. 300-308, 1996.
[2] K. Xin, Q. Zhan, and J. Luo, “A new simple sensorless control method for switched reluctance motor drives,” KIEE J. Electr. Eng. Technol., vol. 1, no. 1, pp. 52-57, 2006.
[3] S. Ogasawara and H. Akagi, “An approach to position sensorless drive for brushless DC motors,” IEEE Trans. on Industry Applications, vol. 27, no. 5, pp. 928-933, 1991.
[4] J. C. Moreira, “Indirect sensing for rotor flux position of permanent magnet AC motors operating over a wide speed range,” IEEE Trans. on Industry Applications, vol. 32, no. 6, pp. 1394-1401, 1996.

[5] J. X. Shen, Z. Q. Zhu, and D. Howe, “Sensorless flux-weakening control of permanent-magnet brushless machines using third harmonic back EMF,” IEEE Trans. on Industry Applications, vol. 40, no. 6, pp. 1629-1636, 2004.

Wednesday 20 December 2017

A Low Cost Speed Estimation Technique for Closed Loop Control of BLDC Motor Drive


ABSTRACT:
This paper proposes a sensorless speed control technique for Brushless DC Motor (BLDC) drives by estimating speed from the hall sensor signals. Conventionally, the speed is measured using precision speed encoders. Since these encoders cost almost half of the entire drive system, there arises the need for a low cost speed estimation technique. This is proposed by measuring the frequency of the in-built-hall sensor signals. Here, a closed loop speed control of BLDC motor is proposed using a current controlled pulse width modulation (PWM) technique. Since BLDC motor is an electronically commutated machine, the commutation period is determined by a switching table that shows the hall signals’ status. The entire system was simulated in MATLAB/Simulink and the performance of the system was analyzed for different speed and torque references.

KEYWORDS:
1.      Brushless DC Motor (BLDC)
2.      Speed estimation
3.      Hall sensors
4.      Current controlled PWM
5.       Inverter

SOFTWARE: MATLAB/SIMULINK

BLOCK DIAGRAM:


Fig.1. Proposed Block Diagram

EXPECTED SIMULATION RESULTS:





Fig. 2. Speed and Torque response of the BLDC drive for reference speed of 3000rpm; (a) Speed; (b) Electromagnetic torque developed


 Fig. 3. Speed and Torque response of the BLDC drive for reference speed of
2000rpm; (a) Speed; (b) Electromagnetic torque developed



Fig. 4. Stator current measured for speed (reference) of 3000rpm and applied
torque 0.5Nm

Fig. 5. Back EMF measured for speed (reference) of 3000rpm and applied
torque 0.5Nm



 Fig. 6. Speed and Torque response in sensored and sensorless mode for a reference speed of 2500rpm; (a) Speed response in sensored mode; (b) Speed response in sensorless mode; (c) Change in applied torques

 CONCLUSION:

This paper proposes a low cost speed estimation technique for BLDC motor drive. This method was found to be working for the entire range of speeds below the rated speed. The performance of the system was comparable with that of the conventional speed encoder based control technique. Actual speed was found to maintain the reference speed for different values of load torques. This was verified successfully by using MATLAB/Simulink. Since the proposed speed estimation technique does not require the motor parameters like resistance, inductance etc., the system is suitable for robust applications, especially in industries.
The future scope of the work can be extended as explained below:
• Although the work emphasizes on speed encoder-less control technique, the cost of the system can be further reduced by replacing the hall sensors with a suitable low cost counterpart.
• Since the torque-ripples are found to be appreciably high, novel techniques for its reduction can be studied.
 REFERENCES:
[1] Hsiu-Ping Wang and Yen-Tsan Liu, “Integrated Design of Speed- Sensorless and Adaptive Speed Controller for a Brushless DC Motor,” IEEE Transactions on Power Electronics, Vol. 21, No. 2, March 2006.
[2] K.S.Rama Rao, Nagadeven and Soib Taib, “Sensorless Control of a BLDC Motor with Back EMF Detection Method using DSPIC,” 2nd IEEE International Conference on Power and Energy, pp. 243-248, December 1-3, 2008.
[3] W. Hong, W. Lee and B. K. Lee, “Dynamic Simulation of Brushless DC Motor Drives Considering Phase Commutation for Automotive Applications,” Electric Machines & Drives Conference,2007 lEMDC’07 IEEE International, , pp. 1377-1383, May 2007.
[4] B. Tibor, V. Fedak and F. Durovsky, “Modeling and Simulation of the BLDC motor in MATLAB GUI,” Industrial Electronics (lSIE), 2011 IEEE International Symposium on Industrial Electronics, Gdansk, pp. 1403-1407, June 2011.

[5] V. P. Sidharthan, P. Suyampulingam and K. Vijith, “Brushless DC motor driven plug in electric vehicle,” International Journal of Applied Engineering Research, vol. 10, pp. 3420-3424, 2015.