asokatechnologies@gmail.com 09347143789/09949240245

Search This Blog

Thursday 16 March 2017

A New Cascaded Switched-Capacitor Multilevel Inverter Based on Improved Series-Parallel Conversion with Less Number of Components


ABSTRACT
KEYWORDS
1.      Cascade sub-multilevel inverter
2.       Series-parallel conversion
3.       Self-charge balancing
4.       Switched-capacitor

SOFTWARE: MATLAB/SIMULINK

CIRCUIT DIAGRAM:


Fig. 1. Proposed 17-level structure

 EXPECTED SIMULATION RESULTS
   

                                                                                      (a)                                                                                                               

 (b)
Fig. 2. Steady states output voltage and current waveforms (a) in simulation Fig. 12. Transient states of output waveforms in simulation (b) in experiment ( 250V/div& 2A/div)



Fig. 3. Transient states of output waveforms in simulation

                   (a)                                                                                                              (b)
Fig. 4. Harmonic orders (a) output voltage (b) output current in simulation



Fig. 5. Observed output voltage waveform at no-load condition
(250V/div)
   
                                                                                                               
                                                                     
    (a)         



(b)
Fig. 6. Capacitors’ voltage ripple waveforms for first case study (a) in simulation (b) in experiment (25 V/dev&50V/div)

     

    







Fig. 7. Blocked voltage waveforms across switches of S1 (25V/div), S2 (100V/div), T1 (50V/div), T2 and T3 (100V/div) from left to right in the experiment
 

                                                                                           (a)  
                                                                                                        
                                                                                                (b)
Fig. 8. Output voltage and current waveforms for (a) inductive load in experiment (250 V/div & 2 A/div) (b) sudden step load in simulation




                                                                                                            (a)  
                                                                                   
 


(b)

Fig. 9. Observed capacitors’ current (a) in simulation (b) in experiment (2A/div)


Fig. 10. (a) laboratory prototype (b) Output 49-level voltage and current waveforms in the experiment (250V/div & 2A/div)




Fig. 11. Across voltage waveforms of capacitors in upper and lower stages of SCCs in proposed 49-level inverter (a) v C 1 lower stage (5V/div) (b) v C 2 lower stage (10V/div) (c) v C 1 upper stage(25V/div) (d) v C 2 upper stage(50V/div)

CONCLUSION

In this paper, at the first, a new reduced components SCC topology was presented which has boost capability remarkably and also can pass the reverse current for inductive loads through existing power switches. The voltage of all capacitors in this structure is balanced by binary asymmetrical algorithm. Next, a new sub-multilevel structure based on suggested SCC was proposed which can generate all of the voltage levels at the output (even and odd). In this case, the conventional output H-bridge cell used to convert the polarity of SCC units, has been removed, therefore number of required IGBTs and other involved components, are decreased. After that, an optimizing  operation was presented which could obvious the number of required capacitors in each of SCC units that participate in the cascade sub-multilevel inverter (CSMLI) to generate maximum number of output voltage levels with less number of elements. Moreover comprehensive comparisons were given which prove the differences between improved symmetric and asymmetric CSMLIs in contrast to some of recently presented topologies in variety aspects. Finally, to confirm the performance and effectiveness of proposed CSMLI, several simulation and experimental results have been presented.

REFERENCES

[1] J. Chavarria, D. Biel, F. Guinjoan, C. Meza, and J. J. Negroni, “Energy balance control of PV cascaded multilevel grid-connected inverters under level-shifted and phase-shifted PWMs,” IEEE Trans. Ind. Electron. vol. 60, no. 1, pp. 98–111, Jan. 2013.
[2] G. Buticchi, E. Lorenzani, and G. Franceschini, “A five-level single-phase grid-connected converter for renewable distributed systems,” IEEE Trans. Ind. Electron., vol. 60, no. 3, pp. 906–918, Mar. 2013.
[3] J. Rodriguez, L. J.Sheng, and P. Fang Zheng, “Multilevel inverters: A survey of topologies, controls, and applications,” IEEE Trans. Ind Electron., vol. 49, no. 4, pp. 724–738, Aug. 2002.
[4] L. G. Franquelo, J. Rodriguez, J. I. Leon, S. Kouro, R. Portillo, and M. A. M. Prats, “The age of multilevel converters arrives,” IEEE Trans. Industrial Electronic Magazine, vol. 2, no. 2, pp. 28–39, Jun. 2008.
[5] M. M. Renge and H. M. Suryawanshi, “Five-Level Diode Clamped Inverter to Eliminate Common Mode Voltage and Reduce dv/dt in Medium Voltage Rating Induction Motor Drives,” IEEE Trans. Power Electron., vol. 23, no. 4, pp. 1598-1607, Jul. 2008.