asokatechnologies@gmail.com 09347143789/09949240245

Search This Blog

Thursday 2 March 2017

An Efficient Modified CUK Converter with Fuzzy based Maximum Power Point Tracking Controller for PV System


 ABSTRACT:
To improve the performance of photovoltaic system a modified cuk converter with Maximum Power Point Tracker (MPPT) that uses a fuzzy logic control algorithm is presented in this research work. In the proposed cuk converter, the conduction losses and switching losses are reduced by means of replacing the passive elements with switched capacitors. These switched capacitors are used to provide smooth transition of voltage and current. So, the conversion efficiency of the converter is improved and the efficiency of the PV system is increased. The PV systems use a MPPT to continuously extract the highest possible power and deliver it to the load. MPPT consists of a dc-dc converter used to find and maintain operation at the maximum power point using a tracking algorithm. The simulated results indicate that a considerable amount of additional power can be extracted from photovoltaic module using a proposed converter with fuzzy logic controller based MPPT

KEYWORDS:

1.      Modified Cuk Converter
2.      Photovoltaic System
3.      Maximum Power Point Tracker
4.      Fuzzy Logic Controller

SOFTWARE: MATLAB/SIMULINK

CIRCUIT DIAGRAM:


                                                        Figure 1: Simulation diagram for the proposed converter

EXPECTED SIMULATION RESULTS:

                                              
                

(a)

(b)

(c)
Figure 2: Output of Solar Irradiation at 500 watts / m2 (a)
Current, (b) Voltage, (c) Power

(a)
(b)
(c)
Figure 3: Output of Solar Irradiation at 1000 watts / m2 (a)
Current, (b) Voltage, (c) Power

CONCLUSION:

The proposed modified cuk converter was simulated in MATLAB simulation platform and the output performance was evaluated. Then, the mode of operation of proposed converter was analyzed by the different solar irradiation level. From that, output current, voltage and power were considered. For evaluating the output performance, the proposed modified cuk converter output was tested with PV system. From the testing results, the output power of the modified converter efficiency and the efficiency deviation were analyzed. The analyses showed that the proposed modified cuk converter was better when compared to conventional cuk converter and boost converter. Experimental setup has been done to prove the effectiveness of the proposed system.

REFERENCES:

1. Singh R & Sood Y R, Transmission tariff for restructured Indian power sector with special consideration to promotion of renewable energy sources, IEEE Region 10 Conference, TENCON, (2009), 1 – 7.
2. Xia Xintao & Xia Junzi, Evaluation of Potential for Developing Renewable Sources of Energy to Facilitate Development in Developing Countries, Asia-Pacific Power and Energy Engineering Conference (APPEEC), (2010), 1 – 3.
3. Hosseini R & Hosseini N & Khorasanizadeh H, An experimental study of combining a photovoltaic system with a heating system, World Renewable Energy Congress, 8 (2011), 2993-3000.
4. Shakil Ahamed Khan & Md. Ismail Hossain, Design and Implementation of Microcontroller Based Fuzzy Logic Control for Maximum Power Point Tracking of a Photovoltaic System, IEEE International Conference on Electrical and Computer Engineering, Dhaka, (2010), 322-325.

5. Pradeep Kumar Yadav A, Thirumaliah S & Haritha G, Comparison of MPPT Algorithms for DC-DC Converters Based PV Systems, International Journal of Advanced Research in Electrical, Electronics and Instrumentation Engineering, 1 (2012), 18-23.