asokatechnologies@gmail.com 09347143789/09949240245

Search This Blog

Wednesday, 19 September 2018

Comparison of DC/DC Converters in DCM for Reducing Low-Frequency Input Current Ripple of Single-Phase Two-Stage Inverters



ABSTRACT
Single-phase two-stage inverters generally use an intermediate capacitor to buffer the power imbalance between DC input and AC output. However, the resultant low-frequency voltage ripple on this intermediate capacitor may produce low frequency ripple at the source side, especially when the front-end dc/dc converter operates in continuous conduction mode (CCM). Some common solutions to reducing this ripple are feed forward control and power decoupling circuits. Alternatively, this paper analyzes a two-stage inverter where the front-end is a dc/dc converter operating in discontinuous conduction mode (DCM). In general dc/dc converters operating in DCM have inherent natural capability to reduce this low-frequency input current ripple, without needing a sophisticated control or complex circuitry as compared with its CCM operation. Analysis with simulation verification is reported to demonstrate such capability.
KEYWORDS
1.      Dc/ac
2.      Low-frequency ripple
3.      Single-phase
4.      Two stage
SOFTWARE: MATLAB/SIMULINK

CIRCUIT DIAGRAM:
Fig. 1. A simplified power-stage diagram of a single-phase two-stage inverter.
EXPECTED SIMULATION RESULTS

          
(a)   CCM operation: _vin = 3:3V


(b) DCM operation: _vin = 0:88V
Fig. 2. DCM boost front-end converter has lower voltage ripple than CCM.


Fig. 3. DCM buck-boost front-end converter does not contain low-frequency
ripple but only high-frequency ripple.
Fig. 4. SEPIC front-end converter operating in DCM+CCM contains negligible
low-frequency ripple but only high-frequency ripple.


Fig. 5. High-gain front-end converter operating in DCM does contains
significant low-frequency ripple.
CONCLUSION
This paper analyzes basic and several higher-order front-end dc/dc converters for single-phase two-stage inverter design. Through inspecting the instantaneous average input current of those converters in discontinuous conduction mode (DCM), it has confirmed that buck-boost converter and buck-boost derived converters such as ZETA are free of low-frequency (mainly double ac line frequency) input current ripple due to the lack of direct connection between input and output during switching actions. For boost converter based converters such as SEPIC and C´ uk converters, their input currents contain lower low-frequency content thanks to the cascaded design. For boost converter based high voltage gain converters, its input current may not necessarily reduce the low-frequency content effectively. It depends on how the high-gain sub circuit is constructed and interacts with the input inductor. Further research is necessary to identify suitable converter topologies which have both smooth input current and low frequency content.
REFERENCES
 [1] K. Fukushima, I. Norigoe, M. Shoyama, T. Ninomiya, Y. Harada, and K. Tsukakoshi, “Input Current-Ripple Consideration for the Pulse-link DC-AC Converter for Fuel Cells by Small Series LC Circuit,” in 2009 Twenty-Fourth Annual IEEE Applied Power Electronics Conference and Exposition, Feb 2009, pp. 447–451.
[2] L. Jianguo, H. Wenbin, Y. Kai, L. Xiaoyu, W. Fuyun, and W. Junji, “Research on input current ripple reduction of two-stage single-phase PV grid inverter,” in 2014 16th European Conference on Power Electronics and Applications, Aug 2014, pp. 1–8.
[3] B. Ge, Y. Liu, H. Abu-Rub, R. S. Balog, F. Z. Peng, S. McConnell, and X. Li, “Current Ripple Damping Control to Minimize Impedance Network for Single-Phase Quasi-Z Source Inverter System,” IEEE Transactions on Industrial Informatics, vol. 12, no. 3, pp. 1043–1054,
June 2016.
[4] Y. Zhou, H. Li, and H. Li, “A Single-Phase PV Quasi-Z-Source Inverter With Reduced Capacitance Using Modified Modulation and Double- Frequency Ripple Suppression Control,” IEEE Transactions on Power Electronics, vol. 31, no. 3, pp. 2166–2173, March 2016.
[5] D. B. W. Abeywardana, B. Hredzak, and V. G. Agelidis, “An Input Current Feedback Method to Mitigate the DC-Side Low-Frequency Ripple Current in a Single-Phase Boost Inverter,” IEEE Transactions on Power Electronics, vol. 31, no. 6, pp. 4594–4603, June 2016.