asokatechnologies@gmail.com 09347143789/09949240245

Search This Blog

Friday 20 March 2020

PMSG Wind Turbine System for Residential Applications



ABSTRACT:
This paper analyzes the operation of small wind turbine system with variable speed Permanent Magnet Synchronous Generator (PMSG) and a Lead Acid Battery (LAB) for residential applications, during wind speed variation. The main purpose is to supply 230 V/50 Hz domestic appliances through a single-phase inverter. The required power for the connected loads can be effectively delivered and supplied by the proposed wind turbine and energy storage systems with an appropriate control method. The models of the PMSG, boost converter with a control method for obtaining maximum power characteristic of wind turbine (MPPT), voltage source inverter (VSI) and LAB model with battery state of charge (SOC) control method, are presented. Energy storage devices are required for power balance and power quality in stand alone wind energy systems. Simulations and experimental results validate the stability of the supply.

KEYWORDS:
1.      Wind energy
2.      Variable-speed
3.      Permanent magnets generators and energy storage

SOFTWARE: MATLAB/SIMULINK

 BLOCK DIAGRAM:



                                          Fig. 1. Stand-alone wind system configuration.


 EXPERIMENTAL RESULTS:



Fig. 2. The PMSG rotor speed variation:
(a) Simulation results; (b) Experimental results.


Fig. 3. The PMSG electromagnetic torque:
(a) Simulation results; (b) Experimental results.



Fig. 4. The DC link rectifier bridge voltage variation:
(a) Simulation results; (b) Experimental results.


Fig. 5. The converter input current variation:
(a) Simulation results; (b) Experimental results.


Fig. 6. The LAB voltage variation:
(a) Simulation results; (b) Experimental results.

Fig. 7. The LAB current variation:
(a) Simulation results; (b) Experimental results.

Fig. 8. The LAB state of charge (SOC) variation:
(a) Simulation results; (b) Experimental results.

Fig. 9. The active power balance of the system:
(a) Simulation results; (b) Experimental results.
CONCLUSION:
In this paper, a PMSG wind turbine system for residential applications is analyzed. Simulation and experimental results show that the active power balance of the system proves to be satisfying during variable wind speed condition. The MPPT algorithm will ensure a maximum extraction of energy from the available wind. LAB always ensures the safe supply of the loads (households) regardless of the problems caused by wind speed variations. At the end one can conclude that the power system’s stability considered in terms of load power quality can be ensured by using the proposed configuration.
REFERENCES:
[1] Barton, J.P.; Infield, D.G.: Energy storage and its use with intermittent renewable energy, IEEE Transaction on Energy Conversion, vol.19, no.2, June 2004, pp. 441-448.
[2] Weissbach, R.; Teodorescu, R.; Sonnenmeier, J.: Comparison of Time-Based Probability Methods for Estimating Energy Storage Requirements for an Off-Grid Residence, IEEE Energy2030, Atlanta, November 2008.
[3] Lee, D. J.; Wang, L.: Small-Signal Stability Analysis of an Autonomous Hybrid Renewable Energy Power Generation/Energy Storage System Part I: Time-Domain Simulations, IEEE Transaction on Energy Conversion, vol. 19, no. 2, March 2008, pp. 311-320.
[4] El-Ali, A.; Kouta, J.; Al-Samrout, D.; Moubayed, N.; Outbib, R.: A Note on Wind Turbine Generator Connected to a Lead Acid Battery, International Conference on Electromechanical and Power Systems, SIELMEN’09, Iasi, Romania, October 2009, pp. 341- 344.
[5] Barote, L.; Marinescu, C.: Control of Variable Speed  PMSG Wind Stand-Alone System, Proc. of International Conference OPTIM’06, Brasov, vol. II, May, 2006, pp. 243-248.