asokatechnologies@gmail.com 09347143789/09949240245

Search This Blog

Friday, 27 November 2015

Single-Phase to Three-Phase Universal Active Power Filter

      

ABSTRACT:

In this paper, a universal active power filter is proposed for harmonic and reactive power compensation in the single-phase to three-phase systems. The proposed configuration solves a typical problem found in remote (or rural) applications, where only a single-phase grid is available and there is a demand to supply three-phase loads. A suitable control strategy is presented to regulate the load voltage, the power factor, and to minimize the voltage and current harmonics simultaneously. Simulated and experimental results are also presented.

KEYWORDS:

1.      Active power filter
2.       Harmonic distortion compensation
3.      Reactive power compensation
4.       Single-phase to three-phase conversion

SOFTWARE: MATLAB/SIMULINK

 BLOCK DIAGRAM:

       
Fig. 1. Conventional configurations. (a) General scheme of the active power filter. (b) Three-phase active power filter. (c) Single-phase active power filter. (d) Single-phase to three-phase converter.

CIRCUIT DIAGRAM:



                   
Fig. 2. Proposed single-phase to three-phase active power filter.


EXPECTED SIMULATION RESULTS:

         

Fig. 3. Experimental results. (a) Voltage and current of the grid (top), dc-link voltage (middle) and load voltages (bottom). (b) Load current (top) and grid current (bottom).

             



Fig. 4. Experimental results in the time (top) and in the frequency (bottom) domains. (a) Grid current. (b) Load current. (c) Grid voltage. (d) Load voltage.

CONCLUSION:

A universal active power filter for harmonic and reactive power compensation in single-phase to three-phase systems was presented. The model of the system was derived, and comparing this kind of solution (single-phase to three-phase universal power filter) with the conventional solution (ac-dc-ac single-phase to three-phase converters) favors the proposed one, in relation to: switches losses minimization and switches power ratings reduction. A suitable control strategy, including the PWM technique, has been developed as well. The experimental results demonstrate the feasibility of the proposed system.

REFERENCES:

[1] Y. W. Li, F. Blaabjerg, D. Vilathgamuwa, and P. C. Loh, “Design and comparison of high performance stationary-frame controllers for DVR implementation,” IEEE Trans. Power Electron., vol. 22, no. 2, pp. 602–612, Mar. 2007.
[2] E.-H. Kim, J.-M. Kwon, J.-K. Park, and B.-H. Kwon, “Practical control implementation of a three- to single-phase online UPS,” IEEE Trans. Ind. Electron., vol. 55, no. 8, pp. 2933–2942, Aug. 2008.
[3] H. Akagi, “Trends in active power line conditioners,” IEEE Trans. Power Electron., vol. 9, no. 3, pp. 263–268, May 1994.
[4] L. Asiminoaei, F. Blaabjerg, and S. Hansen, “Detection is key—harmonic detection methods for active power filter applications,” IEEE Ind. Appl. Mag., vol. 13, no. 4, pp. 22–33, Jul./Aug. 2007.

[5] B. Singh, K. Al-Haddad, and A. Chandra, “A review of active filters for power quality improvement,” IEEE Trans. Ind. Electron., vol. 46, no. 5, pp. 960–971, Oct. 1999.

Seventeen-Level Inverter Formed by Cascading Flying Capacitor and Floating Capacitor H-Bridges

Seventeen-Level Inverter Formed by Cascading Flying Capacitor and Floating Capacitor H-Bridges

ABSTRACT:

A multilevel inverter for generating 17 voltage levels using a three-level flying capacitor inverter and cascaded H-bridge modules with floating capacitors has been proposed. Various aspects of the proposed inverter like capacitor voltage balancing have been presented in the present paper. Experimental results are presented to study the performance of the proposed converter. The stability of the capacitor balancing algorithm has been verified both during transients and steady-state operation. All the capacitors in this circuit can be balanced instantaneously by using one of the pole voltage combinations. Another advantage of this topology is its ability to generate all the voltages from a single dc-link power supply which enables back-to-back operation of converter.
Also, the proposed inverter can be operated at all load power factors and modulation indices. Additional advantage is, if one of the H-bridges fail, the inverter can still be operated at full load with reduced number of levels. This configuration has very low dv/dt and common-mode voltage variation.

KEYWORDS:

1.      Cascaded H-bridge
2.       Flying capacitor
3.       Multilevel inverter
4.       17-level inverter

SOFTWARE: MATLAB/SIMULINK

BLOCK DIAGRAM:

            

       Fig. 1. Block diagram of controller for one phase of the proposed converter.

EXPECTED SIMULATION RESULTS:

         
 Fig. 2. Pole, Phase, capacitor voltages along with current for 10-Hz operation of converter. VAC1(50 V/div),VAO: Pole voltage (100 V/div), VAN: Phase Voltage (100 V/div), VAC4: (100 V/div),VAC3: (10 V/div),VAC2: (25 V/div), IA:2 A/div, Timescale: (20 mS/div).
               
     

Fig.3. Pole, Phase, capacitor voltages along with current for 20-Hz operation of the converter. VAC1: (50 V/div),VAO: Pole voltage(100 V/div), VAN: Phase Voltage (100 V/div), VAC4: (20 V/div),VAC3: (10 V/div),VAC2: (25 V/div), IA:2 A/div, Timescale: 10 mS/div.

              
  
    
Fig.4. Pole, Phase, capacitor voltages along with current for 30-Hz operation of the converter. VAC1:(50 V/div),VAO: Pole voltage(100 V/div),VAN: Phase Voltage (100 V/div), VAC4: (20 V/div),VAC3: (10 V/div),VAC2: (25 V/div), IA:2 A/div, Timescale: 10 mS/div.
                    
     

Fig. 5. Pole, Phase, capacitor voltages along with current for 40-Hz operation of the converter. VAC1:(50 V/div),VAO: Pole voltage(100 V/div),VAN: Phase Voltage (100 V/div), VAC4: (10 V/div),VAC3: (10 V/div),VAC2: (100 V/div), IA:2 A/div, Timescale: 5 mS/div.

                       
      

Fig. 6. Pole, Phase, capacitor voltages along with current during sudden acceleration. VAC1:Cap AC1 voltage(100 V/div), VAO: Pole Voltage(100 V/div), VAN: Phase Voltage(100 V/div),VAC4:Cap AC4 voltage(10 V/div), VAC3:Cap AC3 voltage (20 V/div), VAC2:Cap AC2 voltage (20 V/div),IA: Phase current (2 A/div) Timescale: 500 mS/div.

CONCLUSION:

A new 17-level inverter configuration formed by cascading a three-level flying capacitor and three floating capacitor H-bridges has been proposed for the first time. The voltages of each of the capacitors are controlled instantaneously in few switching cycles at all loads and power factors obtaining high performance output voltages and currents. The proposed configuration uses a single dc link and derives the other voltage levels from it. This enables back-to-back converter operation where power can be drawn and supplied to the grid at prescribed power factor. Also, the proposed 17-level inverter has improved reliability. In case of failure of one of the H-bridges, the inverter can still be operated with reduced number of levels supplying full power to the load. This feature enables it to be used in critical applications like marine propulsion and traction where reliability is of highest concern. Another advantage of the proposed configuration is modularity and symmetry in structure which enables the inverter to be extended to more number of phases like five-phase and six-phase configurations with the same control scheme. The proposed inverter is analyzed and its performance is experimentally verified for various modulation indices and load currents by running a three-phase 3-kW squirrel cage induction motor. The stability of the capacitor balancing algorithm has been tested experimentally by suddenly accelerating the motor at no load and observing the capacitor voltages at various load currents.

REFERENCES:

[1] J. Rodriguez, J.-S. Lai, and F. Z. Peng, “Multilevel inverters: A survey of topologies, controls, and applications,” IEEE Trans. Ind. Appl., vol. 49, no. 4, pp. 724–738, Aug. 2002.
[2] L. G. Franquelo, J. Rodriguez, J. I. Leon, S. Kouro, R. Portillo, and M. A. M. Prats, “The age of multilevel converters arrives,” IEEE Ind. Electron. Mag., vol. 2, no. 2, pp. 28–39, Jun. 2008.
[3] S. Kouro, M. Malinowski, K. Gopakumar, J. Pou, L. G. Franquelo, B.Wu, J. Rodriguez, M. A. Perez, and J. I. Leon, “Recent advances and industrial applications of multilevel converters,” IEEE Trans. Ind. Electron., vol. 57, no. 8, pp. 2553–2580, Aug. 2010.
[4] A. M. Massoud, S. Ahmed, P. N. Enjeti, and B. W.Williams, “Evaluation of a multilevel cascaded-type dynamic voltage restorer employing discontinuous space vector modulation,” IEEE Trans. Ind. Electron., vol. 57, no. 7, pp. 2398–2410, Jul. 2010.

[5] S. Rivera, S. Kouro, B.Wu, S. Alepuz,M. Malinowski, P. Cortes, and J. R. Rodriguez, “Multilevel direct power control—a generalized approach for grid-tied multilevel converter applications,” IEEE Trans. Power Electron., vol. 29, no. 10, pp. 5592–5604, Oct. 2014.

Sensor less Speed Control of Induction Motor Using MRAS


ABSTRACT:
In order to implement the vector control technique, the motor speed information is required. Tachogenerators, resolvers or incremental encoders are used to detect the speed. These sensors require careful mounting and alignment and special attention is required with electrical noises. Speed sensor needs additional space for mounting and maintenance and hence increases the cost and the size of the drive system .These problems are eliminated by speed sensorless vector control by using model reference adaptive system. Model reference adaptive system is a speed estimation method having two models namely reference and adaptive model .The error between two models estimates induction motor speed. This project proposes a Model Reference Adaptive System (MRAS) for estimation of speed of induction motor. An Induction motor is developed in stationary reference frame and Space Vector Pulse Width Modulation (SVPWM) is used for inverter design. PI controllers are designed controlling purpose. It has good tracking and attains steady state response very quickly which is shown in simulation results by using MATLAB/SIMULINK.

KEYWORDS:

1.      Sensorless vector control
2.       Model Reference Adaptive System (MRAS)
3.       Induction motor
4.       stationary reference frame
5.       Speed estimation

SOFTWARE: MATLAB/SIMULINK

BLOCK DIAGRAM:

                     


Fig 1:Block Diagram of Sensor less Control of Induction Motor


                       

Fig 2: block diagram of MRAS

EXPECTED SIMULATION RESULTS:

                 
                         

Fig 3: 3-f currents, Speed, and Torque for no-load reference speed of 100 rad/sec

               


Fig 4:3-f currents, Speed, and Torque for no-load reference speed of 100 rad/sec

               

Fig 5: 3 -f currents, Speed, and Torque for step signal

CONCLUSION:

In this thesis, Sensorless control of induction motor using Model Reference Adaptive System (MRAS) technique has been proposed. Sensorless control gives the benefits of Vector control without using any shaft encoder. In this thesis the principle of vector control and Sensorless control of induction motor are given elaborately. Simulation results of Vector Control and Sensorless Control of induction motor using MRAS technique were carried out by using Matlab/Simulink. From the simulation results, the following observations are made.
i) The transient response of the drive is fast, i.e. we are attaining steady state very quickly.
ii) By using MRAS we are estimating the speed, which is same as that of actual speed of induction motor.
Thus by using sensor less control we can get the same results as that of vector control without shaft encoder. Hence by using this proposed technique, we can reduce the cost of drive i.e. shaft encoder’s cost, we can also increase the ruggedness of the motor as well as fast dynamic response can be achieved.

REFERENCES:

[1] Abbondanti, A. and Brennen, M.B. (1975). “Variable speed induction motor drives use electronic slip calculator based on motor voltages and currents”. IEEE Transactions on Industrial Applications, vol. IA-11, no. 5: pp. 483-488.
[2] Nabae, A. (1982). “Inverter fed induction motor drive system with and instantaneous slip estimation circuit”. Int. Power Electronics Conf., pp. 322-327.
[3] Jotten, R. and Maeder, G. (1983). “Control methods for good dynamic performance induction motor drives based on current and voltages as measured quantities”. IEEE Transactions on Industrial Applications, vol. IA-19, no. 3: pp. 356-363.
[4] Amstrong, G. J., Atkinson, D. J. and Acarnley, P. P. (1997). “A comparison of estimation techniques for sensorless vector controller induction motor drives”. Proc. Of IEEE-PEDS.

[5] Wang yaonan,lu jintao,haung shoudao(2007).”speed sensorless vector control of induction motor based on MRAS theory”.

A seventeen-level inverter with a single DC link for motor drives


           
ABSTRACT:  

In the present paper, a novel topology for generating a 17–level inverter using three-level flying capacitor inverter and cascaded H-bridge modules with floating capacitors. The proposed circuit is analyzed and various aspects of it are presented in the paper. This circuit is experimentally verified and the results are shown. The stability of the capacitor balancing algorithm has been verified during sudden acceleration. This circuit has many pole voltage redundancies. This circuit has an advantage of balancing all the capacitor voltages instantaneously by switching through the redundancies. Another advantage of this topology is its ability to generate all the 17 pole voltages from a single DC link which enables back to back converter operation. Also, the proposed inverter can be operated at all load power factors and modulation indices. Another advantage is, if one of the H-bridges fail, the inverter can still be operated at full load with reduced number of levels.

KEYWORDS:

1.      Seventeen level inverter
2.       Multilevel inverter
3.      Flying Capacitor
4.       Cascaded H-bridge

SOFTWARE: MATLAB/SIMULINK

CIRCUIT DIAGRAM:

       


Fig.1. Proposed seventeen level inverter configuration formed by cascading three level flying capacitor inverter with 3 H-bridges using a Single DC link.

EXPECTED SIMULATION RESULTS:

         

                                                                  (a)

                                                                    (b) 
                        

                                                                    (c)
                  

                                                                    (d)

Fig.2: Voltages of  Capacitors C2, C3, C4 along with the phase current IA
(a)  10Hz operation, VAC4: (100V/div), VAC3: (10V/div), VAC2: (25V/div),IA:5A/div, Timescale: (20 mS/div).
(b)  20Hz operation, VAC4: (20V/div), VAC3: (10V/div), VAC2: (25V/div),IA:2A/div, Timescale: 10mS/div
(c)  30Hz operation, VAC4: (20V/div), VAC3: (10V/div), VAC2: (25V/div),IA:2A/div, Timescale: 10mS/div
(d)  40Hz operation, VAC4: (10V/div), VAC3: (10V/div), VAC2: (100V/div), IA:2A/div,Timescale:5mS/div
                          
                                 
                           
                                                                       (a)
                       

                                                                       (b)
                          

                                                                       (c)
                            

                                                                      (d)
Fig.3: Voltages of  Cap1 with Pole voltage VAO, Phase A Voltage VAN and  phase current IA. 
(a)   10Hz operation, VAC1( 50V/div), VAO: Pole voltage( 100V/div),VAN: Phase Voltage (100V/div),  IA: 2A/div, Timescale: (20mS/div).
(b)  20Hz operation, VAC1: ( 50V/div), VAO: Pole voltage( 100V/div),VAN: Phase Voltage (100V/div),  IA: 2A/div, Timescale: (10mS/div).
(c)    30Hz operation, VAC1: ( 50V/div), VAO: Pole voltage( 100V/div), VAN: Phase Voltage (100V/div),  IA: 2A/div, Timescale: (10mS/div).
(d)    40Hz operation, VAC1: ( 50V/div), VAO: Pole voltage( 100V/div),VAN: Phase Voltage (100V/div),  IA: 2A/div, Timescale: (10mS/div).
                    


                                                                      (a)

                                                                        (b)
Fig.4.  Performance of the capacitor balancing algorithm during sudden acceleration at no load from 10Hz to 40Hz  (a) VAC1:Cap AC1 voltage(100V/div), VAO: Pole Voltage(100V/div) , VAN: Phase Voltage(100V/div), IA: Phase current(2A/div)  (b) VAC4:Cap AC4 voltage(10V/div), VAC3:Cap AC3 voltage (20V/div), VAC2:Cap AC2 voltage (20V/div), IA: Phase current(2A/div)

CONCLUSION:
A  seventeen  level  inverter  formed  by  cascading  a  three level  flying  capacitor  with  floating  capacitor  H-bridges  has been proposed. The proposed inverter has reduced number of  switches as compared with standard configurations.  The  inverter  has  other  advantages  like  ability  to  balance  all  the  capacitor voltages at all  load currents and power  factors  there  by  generating  seventeen  pole  voltages  with  very  little  distortion.   Another advantage of  the  inverter  is ability  to generate all  the  required  voltage  levels  using  a  single  DC  link.  This  possibility  of  using  single  DC  link  enables  back  to  back  converter  operation  where  a  front  end  can  be  used  so  that  power  can  be  drawn  and  supplied  to  grid  at  desired  power  1%#' factor. Another important advantage is if one of devices in one of H-bridges fail, the inverter can still be operated at full load at reduced number of levels.  The proposed  inverter  is  analyzed  and  its  performance  is  experimentally  verified  for  various  modulation  indices  and  load  currents  by  running  a  three  phase  3kW  squirrel  cage  induction  motor.  The  stability  of  the  capacitor  balancing  algorithm  has  been  tested  experimentally  by  suddenly  accelerating  the motor  at no  load  and observing  the  capacitor  voltages at various load currents.

REFERENCES:
 [1] L. G. Franquelo, J. Rodriguez, J. I. Leon, S. Kouro, R. Portillo, M.A.M.  Prats,  “The  age  of multilevel  converters  arrives,”  IEEE  Ind.  Electron.  Magazine, vol. 2, no. 2, pp. 28–39, June.2008.
[2] S.  Kouro,  M.  Malinowski,  K.  Gopakumar,  J.  Pou,  L.  G.  Franquelo,  B.Wu, J. Rodriguez, M. A. Perez, and J. I. Leon, “Recent Advances and  Industrial  Applications  of  Multilevel  Converters,”  IEEE  Trans.  Ind.  Electron.,vol. 57, no. 8, pp. 2553–2580, Aug. 2010.
[3] A. Nabae,  I.  Takahashi,  and H. Akagi,  “A  new  neutral-point-clamped  PWM inverter,” IEEE Trans. Ind. Appl., vol. IA-17, no. 5, pp. 518–523,  Sep. 1981. 
[4] M. Marchesoni, M. Mazzucchelli, and S. Tenconi, “A non-conventional  power  converter  for  plasma  stabilization,”  in  Proc.  IEEE  19th  Annu.  Power  Electron.  Spec. Conf.  (PESC’88) Rec., Apr.  11–14,  vol.  1,  pp.  122–129.

[5] Z.  Du,  L.M.  Tolbert,  J.  N.  Chiasson,  B.  Ozpineci,  H.  Li,  and  A.  Q.  Huang,  “Hybrid  cascaded H-bridges multilevel motor drive  control  for  electric vehicles,” in Proc. IEEE 37th Power Electron. Spec. Conf., Jun.  18–22, 2006, pp. 1–6.