asokatechnologies@gmail.com 09347143789/09949240245

Search This Blog

Monday 1 December 2014

Power Quality and Power Interruption Enhancement by Universal Power Quality Conditioning System with Storage Device


Power Quality and Power Interruption Enhancement by Universal Power Quality Conditioning System with Storage Device

 Abstract: In this paper a novel design of Universal Power Quality Conditioning System (UPQS) is proposed which is composed of the DC/DC converter and the storage device connected to the DC link of UPQS for balancing the voltage interruption. The proposed UPQS can balance the reactive power, harmonic current, voltage sag and swell, voltage unbalance, and the voltage interruption. The performance of proposed system was analyzed through simulations with MATLAB\SIMULINK software. The proposed system can improve the power quality at the common connection point of the non-linear load and the sensitive load.

Keywords:
1.      Universal Power Quality Conditioning System (UPQS)
      2.      Voltage interruption
      3.      DC/DC converters
      4.      uper-capacitor

Software: MATLAB/SIMULINK

Block Diagram:
           Fig. 1: Configuration of proposed UPQC with energy storage.

Expected Simulation Results:
         
                                                                              Fig. 2: Nonlinear load current
                                                Fig. 3: Active and reactive power consumed by load.


                                            Fig. 4: Voltage sag compensation. (a) Source voltage. (b) Load voltage.

Conclusion:
This paper proposes a new configuration of UPQC that consists of the DC/DC converter and the super capacitors for compensating the voltage interruption. The proposed UPQC can compensate the reactive power, harmonic current, voltage sag and swell, voltage unbalance, and the voltage interruption. The control strategy for the proposed UPQC was derived based on the Synchronous reference frame method. The operation of proposed system was verified through simulations with MATLAB/SIMULINK software. The proposed UPQC has the ultimate capability of improving the power quality at the installation point in the distribution system. The proposed system can replace the UPS, which is effective for the long duration of voltage interruption, because the long duration of voltage interruption is very rare in the present power system.

 References:
[1]           Akagi, H., Y. Kanazawa and A. Nabae, 2007. Instantaneous reactive power compensator comprising switching devices without energy storage components. IEEE Transactions on Industry Application, 20: 625-630.
[2]           Aredes, M., K. Heumann, E.H. Watanabe, 1998. An universal active power line conditioner. IEEE Transactions on Power Delivery, 13(2): 545-551.
[3]           Aredes, M. and E.H. Watanabe, 1995. New control algorithms for series and shunt three-phase four-wire active power Filters. IEEE Transactions on Power Delivery, 10: 1649-1656.
[4]           Arrillaga, J., M.H.J. Bollen, N.R. Watson, 2000. Power quality following deregulation. Proceedings of the IEEE, 88(2): 246-261.
[5]           Bendre, A., S. Norris, D. Divan, I. Wallace, 2003. New high power DC/DC converter with loss limited switching and lossless secondary clamp. IEEE Transactions on Power Electronics, 18(4):1020-1027.
[6]           Han, B., B. Bae, H. Kim, S. Baek, 2006. Combined Operation of Unified Power Quality Conditioner With Distributed Generation. IEEE Transactions on Power Delivery, 21: 330-338.
[7]           Han, B., B. Bae, S. Baek, G. Jang, 2006. New configuration of UPQC (unified power quality conditioner) for medium-voltage application. IEEE Transactions on Power Delivery, 21(3): 1438-1444.
[8]           Hideaki, F. and A. Hirofumi, 1998. The unified power quality conditioner: the integration of series- and shunt- active filters. IEEE Transactions on Power Electronics, 13(2): 315–322.
[9]           Hingorani, N.G., 1995. Introducing custom power. IEEE Spectrum, 32(6): 41- 48.
[10]         Hu, M. and H. Chen, 2000. Modeling and Controlling of Unified Power Quality Compensator. IEEE International Conference on Advances in Power System Control, Operation and Management, 2: 431-435. Jacobs, J., A. Averberg, R. De Doncker, 2004. A novel three-phase DC/DC converter for high-power applications. IEEE Power Electronics Specialists Conference, 3: 1861-1867.

[11]         Prodanovic, M., and T.C. Green, 2003. Control and filter design of three-phase inverters for high power quality grid connection. IEEE Transactions on Power Delivery, 18(1): 373-380.