asokatechnologies@gmail.com 09347143789/09949240245

Search This Blog

Thursday, 18 June 2015

Z-SOURCE INVERTER WITH A NEW SPACE VECTOR PWM ALGORITHM FOR HIGH VOLTAGE GAIN


Z-SOURCE INVERTER WITH A NEW SPACE VECTOR PWM ALGORITHM FOR HIGH VOLTAGE GAIN

ABSTRACT:

 This paper presents a methodology to apply a novel space vector pulse width modulation control for three phase Z-source inverter. The space vector modulation for the conventional voltage source inverter is modified so that the additional shoot-through states are inserted within the zero states. So zero voltage time period is diminished for generating a shoot-through time, and active states are unchanged. The shoot-through states are evenly distributed to each phase within zero state. The shoot-through time is used for controlling the dc link voltage boost and hence the output voltage boost of the inverter. This new method provides a high voltage gain at higher modulation index. The proposed algorithm is verified with simulation and experiment. MatLab/Simulink is used for simulating the complete circuit with RL load. The frequency spectra of the output voltage and current are explored.

KEYWORDS:
1.      voltage gain
2.      Z-source inverter
3.      Space vector PWM
4.      Current source inverter
5.       Total harmonic distortion.

SOFTWARE: MATLAB/SIMULINK


CIRCUIT DIAGRAM:

EXPECTED SIMULATION RESULTS:


CONCLUSION:
A novel modified space vector PWM control method was carried out in this paper for three phase Z-source inverter. In this modified SVPWM method four shoot-through states were inserted in each sector for controlling the output voltage of Z-source inverter. The output AC voltage obtained from ZSI is no longer limited and can be boosted beyond the limit imposed by conventional VSI. Using MatLab/Simulink software package the simulation was performed to validate the proposed algorithm. The frequency spectra and the total harmonic distortion of the load current and voltages were obtained. Also the presented concepts were verified experimentally using a laboratory prototype.

REFERENCES:

[1] F. Z. Peng. 2003. Z-Source Inverter. IEEE Transactions on Industry Applications. 39(2): 504-510.
[2] P. C. Loh, D. M. Vilathgamuwa, Y. S. Lai, G. T. Chua and Y. W. Li. 2005. Pulse-width modulation of Z-source inverters. IEEE Trans. Power Electronics. 20: 1346-1355.
[3] Mohan N., W. P. Robbin and T. Undeland. 1995. Power Electronics: Converters, Applications and Design. 2nd Edition, Wiley.
[4] F. Z. Peng, M. Shen and Z. Qian. 2005. Maximum Boost Control of the Z-source Inverter. IEEE Trans. Power Electronics. July. 20(4): 833-838.
[5] Miaosen shen, Jin Wang, Alan Joseph, Fang Z. Peng, Leon m. Tolbert and Donald J. Adams. 2006. Constant Boost Control of the Z-Source Inverter to Minimize Current Ripple and Voltage Stress. IEEE Transactions on Industry Applications. 42(3): 770-778.