asokatechnologies@gmail.com 09347143789/09949240245

Search This Blog

Wednesday 15 July 2015

AN IMPROVED CONTROL STRATEGY FOR THE THREE-PHASE GRID-CONNECTED INVERTER



ABSTRACT:

An improved control strategy for the three-phase grid-connected inverter with space vector pulse  width modulation (SVPWM) is proposed. When the grid current contains harmonics, the d- and q-axis grid currents will be interacted, and then the waveform quality of the grid current will be poorer. As the reference output voltage cannot directly reflect the change of the reference grid current, the dynamic response of the grid-connected inverter is slow. In order to solve the aforementioned problems, the d- and q-axis grid currents in the decoupled components of the grid current controller can be substituted by the d- and q-axis reference grid currents, respectively. The operating principles of the traditional and proposed control methods are illustrated. Experimental results for a 15-kVA three-phase grid-connected inverter with SVPWM verify the theoretical analysis. Compared with the traditional control strategy, the grid-connected inverter with the improved control strategy has high waveform quality of the grid current, small ripple power, and fast dynamic response.

KEYWORDS:
1.     Inverters
2.     LCL filter
3.     Grid-connected
4.     SVPWM
5.     Total harmonic distortion.

SOFTWARE: MATLAB/SIMULINK


BLOCK DIAGRAM:



EXPERIMENTAL  RESULTS:





CONCLUSION:
This paper has proposed an improved SVPWM control strategy for the three-phase grid connected inverter. The reference grid current is used in the decoupled components of the grid current controller in the proposed control method to replace the grid current. Experimental results of a 15-kVA three-phase SVPWM grid-connected inverter show that the grid-connected inverter with the proposed control strategy has high waveform quality of the grid current, small ripple power, and fast dynamic response compared with the traditional control strategy.
  
REFERENCES:
[1] Li, R., Ma, Z., Xu, D.: ‘A ZVS grid-connected three-phase inverter’, IEEE Trans. Power Electron., 2012, 27, (8), pp. 3595–3604
[2] Kirubakaran, K., Jain, S., Nema, R. K.: ‘DSP-controlled power electronic interface for fuel cell-based distributed generation’, IEEE Trans. Power Electron., 2011, 26, (12), pp. 3853–3864
[3] Blaabjerg, F., Liserre, M., Ma, K.: ‘Power electronics converters for wind turbine systems’, IEEE Trans. Ind. Appl., 2012, 48, (2), pp. 708–719
[4] Yao, Z., Xiao, L., Yan, Y.: ‘Seamless transfer of single-phase grid-interactive inverters between grid-connected and stand-alone modes’, IEEE Trans. Power Electron., 2010, 25, (6), pp. 1597–1603
[5] Espi, J. M., Castello, J., GarcĂ­a-Gil, R., Garcera, G., Figueres, E.: ‘An adaptive robust predictive current control for three-phase grid-connected inverters’, IEEE Trans. Ind. Electron., 2011, 58, (8), pp. 3537–3546