asokatechnologies@gmail.com 09347143789/09949240245

Search This Blog

Friday, 26 May 2017

Direct Torque Control of Induction Motor With Constant Switching Frequency


ABSTRACT
Direct Torque Control (DTC) has become a popular technique for the control of induction motor drives as it provides a fast dynamic torque response and robustness to machine parameter variations. Hysteresis band control is the one of the simplest and most popular technique used in DTC of induction motor drives. However the conventional direct torque control has a variable switching frequency which causes serious problems in DTC. This paper presents the DTC of induction motor with a constant switching frequency torque controller. By this method constant switching frequency operation can be achieved for the inverter. Also the torque and flux ripple will get reduced by this technique. The feasibility of this method in minimizing the torque ripple is verified through some simulation results.

KEYWORDS
1.      Direct torque control(DTC)
2.      Constant switching frequency
3.      Induction motor
4.      Three phase inverter.

SOFTWARE: MATLAB/SIMULINK

  
BLOCK DIAGRAM:


Fig. 1. Block diagram of conventional DTC

EXPECTED SIMULATION RESULTS

Fig. 2. Step response of torque (a) hysteresis based (b) modified torque controller


Fig. 3. Response of torque and speed for squre wave torque reference in
(a) hysteresis based (b)modified torque controller


Fig. 4.(a) Hysteresis based controller (b) modified torque controller


Fig. 5. flux waveform for (a) hysteresis based (b)modified torque controller

Fig. 6. flux locus for (a) hysteresis based (b)modified torque controller


Fig. 7. Frequency spectrum of the switching pattern Sb for (a) hysteresis based (b) modified torque controller

CONCLUSION
This paper presents a constant switching frequency torque controller based DTC of induction motor drive. By using the modified torque controller the switching frequency of the inverter also becomes constant at 10 kHz. As a result, the harmonic contents in the phase currents are very much reduced. So the phase current distortion is reduced. The torque ripple is also reduced by replacing the torque hysteresis controller with the modified torque controller. Moreover, with the modified torque controller, an almost circular stator flux locus is obtained. Without sacrificing the dynamic performance of the hysteresis controller, the modified scheme gives constant switching frequency. This work can be implemented using DSP. The work can be extended by increasing the switching frequency above audible range, i.e. more or equal to 20 kHz. This is an effective way to shift the PWM harmonics out of human audible frequency range. With high switching frequency the harmonic content of stator current will be reduced significantly.

REFERENCES
[1]   John R G Schofield, (1995) “Direct Torque Control – DTC”, IEE, Savoy Place, London WC2R 0BL, UK.
[2]   L.Tang, L.Zhong, M.F.Rahman, Y.Hu,(2002)“An Investigation of a modified Direct Torque Control Strategy for flux and torque ripple reduction for Induction Machine drive system with fixed switching frequency”, 37th IAS Annual Meeting Ind. Appl. Conf. Rec., Vol. 1, pp. 104-111.
[3]   J-K. Kang, D-W Chung, S. K. Sul, (2001) “Analysis and prediction of inverter switching frequency in direct torque control of induction machine based on hysteresis bands and machine parameters”, IEEE Transactions on Industrial Electronics, Vol. 48, No. 3, pp. 545-553.
[4]   D.Casadei, G.Gandi,G.Serra,A.Tani,(1994)“Switching strategies in direct torque control of induction machines,in Proc. Of ICEM’94, Paris (F), pp. 204-209.

[5]   J-K. Kang, D-W Chung and S.K. Sul, (1999) “Direct torque control of induction machine with variable amplitude control of flux and torque hysteresis bands”, International Conference on Electric Machines and Drives IEMD’99, pp. 640-642