asokatechnologies@gmail.com 09347143789/09949240245

Search This Blog

Monday, 9 December 2019

Fuzzy Logic Based MPPT Control for a PV/Wind Hybrid Energy System



ABSTRACT:
In this paper, we present a modeling and simulation of a standalone hybrid energy system which combines two renewable energy sources, solar and wind, with an intelligent MPPT control based on fuzzy logic to extract the maximum energy produced by the two PV and Wind systems. Moreover, other classical MPPT methods were simulated and evaluated to compare with the FLC method in order to deduce the most efficient in terms of rapidity and oscillations around the  maximum power point, namely Perturb and Observe (P&O),  Incremental Conductance (INC) for the PV system and Hill  Climbing Search (HCS) for the Wind generator. The simulation results show that the fuzzy logic technique has a better performance and more efficient compared to other methods due to its fast response, the good energy efficiency of the PV/Wind system and low oscillations during different weather conditions.
KEYWORDS:
1.      Hybrid energy system
2.      MPPT
3.      Fuzzy Logic Control (FLC)
4.      Wind system
5.      Photovoltaic system
6.      PMSG

SOFTWARE: MATLAB/SIMULINK

BLOCK DIAGRAM:


Fig. 1. Hybrid energy system architecture.

EXPECTED SIMULATION RESULTS:




Fig. 2. PV generator output power for different MPPT techniques.

Fig. 3. PV generator output voltage for different MPPT techniques.



Fig. 4. Mechanical power of wind turbine for different MPPT techniques.



Fig. 5. Power coefficient (Cp) for different MPPT techniques.

CONCLUSION:
In this work, an intelligent control based on fuzzy logic is developed to improve the performance and reliability of a PV/Wind hybrid energy system, also the implementation of the other conventional MPPT algorithms for compared with the FLC technique. For a best performance analysis of MPPT techniques on the system, the simulations are carried out under different operating conditions. Simulation results show that the fuzzy controller has a better performance because it allows with a fast response and high accuracy to achieve and track the maximum power point than the P&O, INC and HCS methods for the PV and Wind generators respectively.
REFERENCES:
[1] A.V. Pavan Kumar, A.M. Parimi and K. Uma Rao, “Implementation of MPPT control using fuzzy logic in solar-wind hybrid power system,” IEEE International Conference on Signal Processing, Informatics, Communication and Energy Systems (SPICES), India, 19-21 February, 2015.
[2] C. Marisarla and K.R. Kumar, “A hybrid wind and solar energy system with battery energy storage for an isolated system,” International Journal of Engineering and Innovative Technology, vol. 3, n°3, pp. 99-104, ISSN 2277-3754, September 2013.
[3] L. Qin and X. Lu, “Matlab/Simulink-based research on maximum power point tracking of photovoltaic generation,” Physics Procedia, 24, pp.10- 18, 2012.
[4] B. Bendib, F. Krim, H. Belmili, M. F. Almi and S. Boulouma, “Advanced fuzzy MPPT controller for a stand-alone PV system,” Energy Procedia, 50, pp.383-392, 2014.
[5] H. Bounechba, A. Bouzid, K. Nabti and H. Benalla, “Comparison of perturb & observe and fuzzy logic in maximum power point tracker for pv systems,” Energy Procedia, 50, pp.677-684, 2014.