asokatechnologies@gmail.com 09347143789/09949240245

Search This Blog

Thursday, 27 October 2022

Seven-Level Inverter with Reduced Switches for PV System Supporting Home-Grid and EV Charger

ABSTRACT:

This paper proposes a simple single-phase new pulse-width modulated seven-level inverter architecture for photovoltaic (PV) systems supporting home-grid with electricvehicle (EV) charging port. The proposed inverter includes a reduced number of power components and passive elements size, while showing less output-voltage total harmonic distortion (THD), and unity power factor operation. In addition, the proposed inverter requires simple control and switching strategies compared to recently published topologies. A comparative study was performed to compare the proposed inverter structure with the recent inverter topologies based on the number of components in the inverter circuit, number of components per output-voltage level, average number of active switches, THD, and operating efficiency as effective parameters for inverter performance evaluation. For design and validation purposes, numerical and analytical models for a grid-tied solar PV system driven by the proposed seven-level inverter were developed in MATLAB/Simulink environment. The inverter performance was evaluated considering grid-integration and stand-alone home with level-2 AC EV charger (3–6 kW). Compared with recently published topologies, the proposed inverter utilizes a reduced number of power components (7 switches) for seven-level terminal voltage synthesis. An experimental prototype for proposed inverter with the associated controller was built and tested for a stand-alone and grid-integrated system. Due to the lower number of ON-switches, the inverter operating efficiency was enhanced to 92.86% with load current THD of 3.43% that follows the IEEE standards for DER applications.

KEYWORDS:

1.      DC-AC converter

2.      Electric vehicles

3.      Home grid

4.      Maximum power point tracking (MPPT)

5.      Multilevel inverter

6.      Photovoltaic (PV) system

7.      Seven-level inverter

SOFTWARE: MATLAB/SIMULINK

BLOCK DIAGRAM:  


Figure 1. Circuit configuration of solar PV system in integrated with the grid and EV loads via the proposed 7level-inverter.

EXPECTED SIMULATION SYSTEM:


(a) Solar irradiation


(b) PV current



(c) PV voltage

Figure 2. Cont

time(s)

(d)PV power

Figure 3. the pv panel current, voltage, and power.

 

Figure 4. multi- Level inverter output voltage.


Figure 5. the injected current, voltage, and power variation. (a) Grid voltage and current; (b) Grid injected power.


 

Figure 6. The reference and actual injected currents of the seven-level inverter at irradiance variation.

 


Figure 7. Simulation results of the proposed 7-level inverter as level-2 EV charger (240 V, 3:6 kW); (a) loading profile, (b) multilevel output voltage, and (c) inverter voltage/pulsating current


Figure 8. Simulation results of the proposed 7-level inverter for house loads voltage control (2 kW). (a) Load reference and actual voltages, (b) Load voltage and current

CONCLUSION:

This paper has presented a new topology of a single-phase seven-level inverter as an interface for grid-integrated and stand-alone solar PV systems. The circuit configuration This paper has presented a new topology of a single-phase seven-level inverter as an interface for grid-integrated and stand-alone solar PV systems. The circuit configuration This paper has presented a new topology of a single-phase seven-level inverter as an interface for grid-integrated and stand-alone solar PV systems. The circuit configuration and operation principle of the proposed inverter have been presented in detail a long with    the switching patterns and control strategy. A comparative study between the proposed inverter structure and the recent MLI topologies is enriched to reveal the features of the proposed inverter. The proposed MLI structure considers a reduced number of power switches, NC/L, and NAVG/Pole, which enhances the inverter operating efficiency and decreases its cost. Only seven switches have been utilized to synthesis voltage waveform of seven levels at the output terminals. The performance of the proposed inverter and associated control was investigated for grid-integrated and stand-alone PV systems based on simulation and experimental tests. The test platform includes a boost converter with MPPT control, which feeds the front-end of the proposed MLI. The results show that the proposed inverter exhibits an improved steady state response, and minimum settling time (i.e., 5 ms). THD of both voltage and current waveforms during grid-integration and stand-alone operations is 3.43%, which follows the IEEE-1547 harmonic standards for DER applications. In addition, the inverter offers a high operating efficiency of 92.86%, compared to most of the recently published topologies surveyed in this paper.

REFERENCES:

1. Solangi, K.; Islam, M.; Saidur, R.; Rahim, N.; Fayaz, H. A review on global solar energy policy. Renew. Sustain. Energy Rev. 2011, 15, 2149–2163. [CrossRef]

2. Ali, A.I.; Sayed, M.A.; Mohamed, E.E. Modified efficient perturb and observe maximum power point tracking technique for grid-tied PV system. Int. J. Electr. Power Energy Syst. 2018, 99, 192–202. [CrossRef]

3. Sayed, M.A.; Mohamed, E.; Ali, A. Maximum Power Point Tracking Technique for Grid tie PV System. In Proceedings of the 7th International Middle-East Power System Conference, (MEPCON’15), Mansoura University, Dakahlia Governorate, Egypt, 15–17 December 2015.

4. Ali, A.I.; Mohamed, E.E.; Sayed, M.A.; Saeed, M.S. Novel single-phase nine-level PWM inverter for grid connected solar PV farms. In Proceedings of the 2018 International Conference on Innovative Trends in Computer Eng. (ITCE), Aswan, Egypt, 19–21 February 2018; IEEE: Piscataway, NJ, USA, 2018; pp. 345–440.

5. Youssef, A.-R.; Ali, A.I.; Saeed, M.S.; Mohamed, E.E. Advanced multi-sector P&O maximum power point tracking technique for wind energy conversion system. Int. J. Electr. Power Energy Syst. 2019, 107, 89–97.