asokatechnologies@gmail.com 09347143789/09949240245

Search This Blog

Wednesday, 29 June 2016

A High Gain Input-Parallel Output-Series DC/DC Converter with Dual Coupled Inductors

ABSTRACT
High voltage gain dc–dc converters are required in many industrial applications such as photovoltaic and fuel cell energy systems, high-intensity discharge lamp (HID), dc back-up energy systems, and electric vehicles. This paper presents a novel input-parallel output-series boost converter with dual coupled inductors and a voltage multiplier module. On the one hand, the primary windings of two coupled inductors are connected in parallel to share the input current and reduce the current ripple at the input. On the other hand, the proposed converter inherits the merits of interleaved series-connected output capacitors for high voltage gain, low output voltage ripple, and low switch voltage stress. Moreover, the secondary sides of two coupled inductors are connected in series to a regenerative capacitor by a diode for extending the voltage gain and balancing the primary-parallel currents. In addition, the active switches are turned on at zero current and the reverse recovery problem of diodes is alleviated by reasonable leakage inductances of the coupled inductors. Besides, the energy of leakage inductances can be recycled. A prototype circuit rated 500-W output power is implemented in the laboratory, and the experimental results shows satisfactory agreement with the theoretical analysis.

KEYWORDS
1.      DC–DC converter
2.      Dual coupled inductors
3.      High gain
4.      Input-parallel output-series.

SOFTWARE: MATLAB/SIMULINK
CIRCUIT DIAGRAM:

Fig. 1. Equivalent circuit of the presented converter.


Fig.2 Key theoretical waveforms.


EXPERIMENTAL VERIFICATIONS:


Fig.3 Key experimental current waveforms.

Fig.4 Voltage stress waveforms of power components.

CONCLUSION
For low input-voltage and high step up power conversion, this paper has successfully developed a high-voltage gain dc–dc converter by input-parallel output-series and inductor techniques. The key theoretical waveforms, steady-state operational principle, and the main circuit performance are discussed to explore the advantages of the proposed converter. Some important characteristics of the proposed converter are as follows: 1) it can achieve a much higher voltage gain and avoid operating at extreme duty cycle and numerous turn ratios; 2) the voltage stresses of the main switches are very low, which are one fourth of the output voltage under N = 1; 3) the input current can be automatically shared by each phase and low ripple currents are obtained at input; 4) the main switches can be turned ON at ZCS so that the main switching losses are reduced; and 5) the current falling rates of the diodes are controlled by the leakage inductance so that the diode reverse-recovery problem is alleviated. At the same time, there is a main disadvantage that the duty cycle of each switch shall be not less than 50% under the interleaved control with 180phase shift.

REFERENCES
[1] C.Cecati, F. Ciancetta, and P. Siano, “A multilevel inverter for photovoltaic systems with fuzzy logic control,” IEEE Trans. Ind. Electron., vol. 57, no. 12, pp. 4115–4125, Dec. 2010.
[2] X. H. Yu, C. Cecati, T. Dillon, and M. G. Simoes, “The new frontier of smart grid,” IEEE Trans. Ind. Electron. Mag., vol. 15, no. 3, pp. 49–63, Sep. 2011.
[3] G. Fontes, C. Turpin, S. Astier, and T. A. Meynard, “Interactions between fuel cell and power converters: Influence of current harmonics on a fuel cell stack,” IEEE Trans. Power Electron., vol. 22, no. 2, pp. 670–678, Mar. 2007.
[4] J. Y. Lee and S. N. Hwang, “Non-isolated high-gain boost converter using voltage-stacking cell,” Electron. Lett., vol. 44, no. 10, pp. 644–645, May 2008.

[5] Z. Amjadi and S. S. Williamson, “Power-electronics-based solutions for plug-in hybrid electric vehicle energy storage and management systems,” IEEE Trans. Ind. Electron., vol. 57, no. 2, pp. 608–616, Feb. 2010.