asokatechnologies@gmail.com 09347143789/09949240245

Search This Blog

Tuesday 21 June 2016

Distributed Voltage Control with Electric Springs: Comparison with STATCOM


ABSTRACT:
 The concept of ‘Electric Spring (ES)’ has been proposed recently as an effective means of distributed voltage control. The idea is to regulate the voltage across the ‘critical loads’ while allowing the ‘non-critical’ impedance-type loads (e.g. water heaters) to vary their power consumption and thus contribute to demand-side response. In this paper a comparison is made between distributed voltage control using ES against the traditional single point control with STATCOM. For a given range of supply voltage variation, the total reactive capacity required for each option to produce the desired voltage regulation at the point of connection is compared. A simple case study with a single ES and STATCOM is presented first to show that the ES and STATCOM require comparable reactive power to achieve similar voltage regulation. Comparison between a STATCOM and ES is further substantiated through similar case studies on the IEEE 13-bus test feeder system and also on a part of the distribution network in Sha Lo Wan Bay, Hong Kong. In both cases, it turns out that a group of ESs achieves better total voltage regulation than STATCOM with less overall reactive power capacity. Dependence of the ES capability on proportion of critical and non-critical load is also shown.
KEYWORDS:

1.      Demand response
2.       Electric springs
3.       STATCOM
4.       Voltage control
5.       Voltage regulation

SOFTWARE: MATLAB/SIMULINK

BLOCK DIAGRAM:
                                          

Fig. 1. Electric Spring set-up for Smart loads.





Fig. 2. Simulation set up with an intermittent source and an equivalent power grid.


EXPECTED SIMULATION RESULTS:


Fig. 3. System response following decrease in reactive power consumption of the intermittent source from 467 to 110 VAr


Fig. 4. System response following increase in reactive power consumption of the intermittent source from 1100 to 467 VAr.



             
Fig. 5. System response for different distribution of non-critical and critical loads (NC:C). Disturbance is increase in reactive power consumption of the intermittent source from 467 to 1100 VAr.

CONCLUSION:
In this paper a comparison is made between distributed voltage control using ES against the traditional single point control with STATCOM. For a given range of supply voltage variation, the total voltage regulation and the total reactive capacity required for each option to produce the desired voltage regulation at the point of connection are compared. A simple case study with a single ES and STATCOM is presented first to show that the ES and STATCOM require comparable reactive power to achieve similar voltage regulation. Comparison between a STATCOM and ES is further substantiated through similar case studies on the IEEE 13-bus test feeder system and also on a part of the distribution network in Sha Lo Wan Bay, Hong Kong. In both cases, it turns out that the ESs requires less overall reactive power capacity than STATCOM and yields better total voltage regulation. This makes electric springs (ESs) a promising technology for future smart grids where selective voltage regulation for sensitive loads would be necessary alongside demand side response.
REFERENCES:
[1] N. G. Hingorani and L. Gyugyi, Understanding FACTS : concepts and technology of flexible AC transmission systems. New York: IEEE Press, 2000.
[2] S. Y. Hui, C. K. Lee, and F. F. Wu, "Electric Springs: A New Smart Grid Technology," Smart Grid, IEEE Transactions on, vol. 3, pp. 1552-1561, 2012.
[3] A. Brooks, E. Lu, D. Reicher, C. Spirakis, and B. Weihl, "Demand Dispatch," IEEE Power and Energy Magazine,, vol. 8, pp. 20-29, 2010.
[4] D. Westermann and A. John, "Demand Matching Wind Power Generation With Wide-Area Measurement and Demand-Side Management," IEEE Transactions on Energy Conversion, vol. 22, pp. 145-149, 2007.
[5] C. K. Lee and S. Y. Hui, "Reduction of Energy Storage Requirements in Future Smart Grid Using Electric Springs," Smart Grid, IEEE Transactions on, vol. PP, pp. 1-7, 2013.