asokatechnologies@gmail.com 09347143789/09949240245

Search This Blog

Thursday, 30 June 2016

A Novel High Step-up DC/DC Converter Based on Integrating Coupled Inductor and Switched-Capacitor Techniques for Renewable Energy Applications


ABSTRACT
In this paper, a novel high step-up dc/dc converter is presented for renewable energy applications. The suggested structure consists of a coupled inductor and two voltage multiplier cells, in order to obtain high step-up voltage gain. In addition, two capacitors are charged during the switch-off period, using the energy stored in the coupled inductor which increases the voltage transfer gain. The energy stored in the leakage inductance is recycled with the use of a passive clamp circuit. The voltage stress on the main power switch is also reduced in the proposed topology. Therefore, a main power switch with low resistance RDS(ON) can be used to reduce the conduction losses. The operation principle and the steady-state analyses are discussed thoroughly. To verify the performance of the presented converter, a 300-W laboratory prototype circuit is implemented. The results validate the theoretical analyses and the practicability of the presented high step-up converter.

KEYWORDS:
Coupled inductor, DC/DC converters, High step-up, Switched capacitor.

SOFTWARE: MATLAB/SIMULINK

 CIRCUIT DIAGRAM:

Fig. 1. Circuit configuration of the presented high-step-up converter.

EXPERIMENTAL RESULTS:

  





Fig. 2. Experimental results under load 300 W.

CONCLUSION

This paper presents a new high-step-up dc/dc converter for renewable energy applications. The suggested converter is suitable for DG systems based on renewable energy sources, which require high-step-up voltage transfer gain. The energy stored in the leakage inductance is recycled to improve the performance of the presented converter. Furthermore, voltage stress on the main power switch is reduced. Therefore, a switch with a low on-state resistance can be chosen. The steady-state operation of the converter has been analyzed in detail. Also, the boundary condition has been obtained. Finally, a hardware prototype is implemented which converts the 40-V input voltage into 400-V output voltage. The results prove the feasibility of the presented converter.

REFERENCES

 [1] F.Nejabatkhah, S. Danyali, S. Hosseini, M. Sabahi, and S. Niapour, “Modeling and control of a new three-input DC–DC boost converter for hybrid PV/FC/battery power system,” IEEE Trans. Power Electron., vol. 27, no. 5, pp. 2309–2324, May 2012.
[2] R. J. Wai and K. H. Jheng, “High-efficiency single-input multiple-output DC–DC converter,” IEEE Trans. Power Electron., vol. 28, no. 2, pp. 886–898, Feb. 2013.
[3] Y. Zhao, X. Xiang, C. Li, Y. Gu, W. Li, and X. He, “Single-phase high step-up converter with improved multiplier cell suitable for half- bridgebased PV inverter system,” IEEE Trans. Power Electron., vol. 29, no. 6, pp. 2807–2816, Jun. 2014.
[4] J.H. Lee, T. J. Liang, and J. F. Chen, “Isolated coupled-inductor-integrated DC–DC converter with non-dissipative snubber for solar energy applications,” IEEE Trans. Ind. Electron., vol. 61, no. 7, pp. 3337–3348, Jul.2014.

[5] C.Olalla, C. Delineand, andD.Maksimovic, “Performance of mismatched PV systems withsubmodule integrated converters,” IEEE J. Photovoltaic, vol. 4, no. 1, pp. 396–404, Jan. 2014.