asokatechnologies@gmail.com 09347143789/09949240245

Search This Blog

Friday 1 October 2021

Design of a Proportional Resonant Controller for Packed U Cell 5 Level Inverter for Grid-Connected Applications

 ABSTRACT:

 In this paper, the design of a proportional resonant (PR) controller for the packed U cell (PUC) 5 level inverter is presented. The objective of the presented work is to present a better solution for current control in grid connected application of the investigated topology. A suitable LCL filter is designed along with the PR control scheme for grid connection. Simulation is performed in MATLAB®/Simulink simulation environment and the theoretical as well as simulation results are validated through experimental results. The simulation results shown in the paper includes both the steady state and the dynamic conditions. The key equations, block diagram, simulation results and experimental results are shown and discussed in the paper.

 KEYWORDS:


1.      Packed U Cell

2.       Proportional Resonant Controller

3.      Multi Level Inverter

4.      Grid Connected

SOFTWARE: MATLAB/SIMULINK

CONCLUSION:  

The paper has discussed the design of a proportional resonant controller for packed U cell 5 level inverter for grid-connected applications. First the theoretical analysis has been done in the paper and the same is verified by the simulation results which is further validated by the experimental results. It can be observed that the THD is very minimal and follows the IEEE standards. The single phase 5 level PUC inverter can be extended to 3 phase and 5 phase PUC inverter in the future for connection to the 3 phase grid and 5 phase motor drives application. The control algorithm can be developed in future for integration with the 3 phase grid and 5 phase motor drives application as discussed above.

REFERENCES:

[I] L. Hadjidemetriou, E. Kyriakides and F. Blaabjerg, "A Robust Synchronization to Enhance the Power Quality of Renewable Energy Systems," in IEEE Transactions on Industrial Electronics, vol. 62, no. 8, pp. 4858-4868, Aug. 2015 ..

[2] F. Blaabjerg, Zhe Chen and S. B. Kjaer, "Power electronics as efficient interface in dispersed power generation systems," in IEEE Transactions on Power Electronics, vol. 19, no. 5, pp. 1184-1194, Sept. 2004.

[3] 1. Rodriguez, J ih-Sheng Lai and Fang Zheng Peng, "Multilevel inverters: a survey of topologies, controls, and applications," in IEEE Transactions on Industrial Electronics, vol. 49, no. 4, pp. 724-738, Aug 2002.

[4] A. Tariq, M. A Husain, M. Ahmad and M. Tariq, "Simulation and study of a grid connected multilevel converter (MLC) with varying DC input," Environment and Electrical Engineering (EEEiC), 2011 10th international Conference on, Rome, 2011 , pp. 1-4.

[5] K. K. Gupta, A Ranjan, P. Bhatnagar, L. K. Sahu and S. Jain, "Multilevel Inverter Topologies With Reduced Device Count: A Review," in Feee Transactions on Power Electronics, vol. 31, no. I, pp. 135-151 , Jan. 2016.