asokatechnologies@gmail.com 09347143789/09949240245

Search This Blog

Monday, 27 October 2014

Integration and Operation of a Single-Phase Bidirectional Inverter With Two Buck/Boost MPPTs for DC-Distribution Applications

Integration and Operation of a Single-Phase
Bidirectional Inverter With Two Buck/Boost MPPTs
for DC-Distribution Applications


ABSTRACT:

This study is focused on integration and operation of a single-phase bidirectional inverter with two buck/boost maximum power point trackers (MPPTs) for dc-distribution applications. In a dc-distribution system, a bidirectional inverter is required to control the power flow between dc bus and ac grid, and to regulate the dc bus to a certain range of voltages.Adroop regulation mechanism according to the inverter inductor current levels to reduce capacitor size, balance power flow, and accommodate load variation is proposed. Since the photovoltaic (PV) array voltage can vary from 0 to 600 V, especially with thin-film PV panels, the MPPT topology is formed with buck and boost converters to operate at the dc-bus voltage around 380 V, reducing the voltage stress of its followed inverter. Additionally, the controller can online check the input configuration of the two MPPTs, equally distribute the PV-array output current to the two MPPTs in parallel operation, and switch control laws to smooth out mode transition. A comparison between the conventional boost MPPT and the proposed buck/boost MPPT integrated with a PV inverter is also presented. Experimental results obtained from a 5-kW system have verified the discussion and feasibility.

KEYWORDS:
1.     Bidirectional inverter
2.     Buck/Boost Maximum Power Point Trackers (MPPTs)
3.     DC-distribution applications.

SOFTWARE: MATLAB/SIMULINK

BLOCK DIAGRAM:


               

            Fig. Configuration of the studied PV inverter system with the buck/boost MPPTs.

  

CONCLUSION:

In this paper, a single-phase bidirectional inverter with two buck/boost MPPTs has been designed and implemented. The inverter controls the power flow between dc bus and ac grid, and regulates the dc bus to a certain range of voltages. A droop regulation mechanism according to the inductor current levels has been proposed to balance the power flow and accommodate load variation. Since the PV-array voltage can vary from 0 to 600 V, the MPPT topology is formed with buck and boost converters to operate at the dc-bus voltage around 380 V, reducing the voltage stress of its followed inverter. Additionally, the controller can online check the input configuration of the MPPTs, equally distribute the PV-array output current to the two MPPTs in parallel operation, and switch control laws to smooth out mode transition. Integration and operation of the overall inverter system have been discussed in detail, which contributes to dc distribution applications significantly. Experimental results obtained from a 5-kW, single-phase bidirectional inverter with the two MPPTs have verified the analysis and discussion.

REFERENCES:

[1] J. M. Carrasco, L. G. Franquelo, J. T. Bialasiewicz, E. Galvan, R. C. P. Guisado, Ma. A. M. Prats, J. I. Leon, and N. Moreno-Alfonso, “Power-electronic systems for the grid integration of renewable energy sources: a survey,” IEEE Trans. Ind. Electron., vol. 53, no. 4, pp. 1002– 1016, Aug. 2006.
[2] L. N. Khanh, J.-J. Seo, T.-S. Kim, and D.-J. Won, “Power-management strategies for a grid-connected PV-FC hybrid system,” IEEE Trans. Power Deliv., vol. 25, no. 3, pp. 1874–1882, Jul. 2010.
[3] Y. K. Tan and S. K. Panda, “Optimized wind energy harvesting system using resistance emulator and active rectifier for wireless sensor nodes,” IEEE Trans. Power Electron., vol. 26, no. 1, pp. 38–50, Jan. 2011.
[4] J.-M. Kwon, K.-H. Nam, and B.-H. Kwon, “Photovoltaic power conditioning system with line connection,” IEEE Trans. Ind. Electron., vol. 53, no. 4, pp. 1048–1054, Aug. 2006.
[5] J. Selvaraj and N. A. Rahim, “Multilevel inverter for grid-connected PV system employing digital PI controller,” IEEE Trans. Ind. Electron., vol. 56, no. 1, pp. 149–158, Jan. 2009.