asokatechnologies@gmail.com 09347143789/09949240245

Search This Blog

Friday 27 November 2015

Common-Mode Voltage Eliminated Three-Level Inverter using a Three-Level Flying-Capacitor Inverter and Cascaded H-Bridge



ABSTRACT:

This paper proposes a new 3 level common mode voltage eliminated inverter using an inverter structure formed by cascading a H-Bridge with a three-level flying capacitor inverter. The three phase space vector polygon formed by this configuration and the polygon formed by the common-mode eliminated states have been discussed. The entire system is simulated in Simulink and the results are experimentally verified. This system has an advantage that if one of devices in the H- Bridge fails, the system can still be operated as a normal 3 level inverter mode at full power. This inverter has many advantages like use of single DC-supply, making it possible for a back to back grid-tied converter application, improved reliability etc.

KEYWORDS:

1.      Common mode voltage elimination
2.       Three level inverter
3.       Multi-level inverter

 SOFTWARE: MATLAB/SIMULINK

 CIRCUIT DIAGRAM:
        
    

Figure 1. Power circuit for the proposed three level common mode voltage eliminated inverter

EXPECTED SIMULATION RESULTS:

   


Figure.2.Simulation result for testing the capacitor balancing algorithm. VAO:Pole Voltage(100V/div), IA:Pole Current(5A/div) VC1:Cap1-Voltage(100V/div), VC2:Cap2-Voltage(50V/div) ,VCM: Common mode voltage(50V/div) Time: 500mS/div.
  


Figure 3. Steady state performance at 10 Hz. VAO: Pole Voltage(100V/div), VAN: Phase Voltage(100V/div), VNO: Neutral point voltage(20V/div)IA:Phase Current(2A/div) T:20mS/div.



Figure 4. Steady state performance at 20 Hz. VAO: Pole Voltage(100V/div), VAN: Phase Voltage(100V/div), VNO: Neutral point Voltage(20V/div)IA: Phase Current(2A/div) T:10mS/div.
                                                           

Figure 5. Steady state performance at 30 Hz. VAO: Pole Voltage(100V/div), VAN: Phase Voltage(100V/div), VNO: Neutral point Voltage(20V/div)IA: Phase Current(2A/div) T:10mS/div.


                                                                                                    
Figure 6. Steady state performance at 40 Hz. VAO: Pole Voltage(100V/div), VAN: Phase Voltage(100V/div), VNO: Neutral point (20V/div)IA: Phase Current(2A/div) T:5mS/div.


                                    
Figure 7. Steady state performance at 50 Hz. VAO: Pole Voltage(100V/div), VAN: Phase Voltage(100V/div), VNO: Neutral point Voltage(200V/div)IA: Phase Current(2A/div) T:5mS/div.
                         
        
Figure 8. Steady State performance at 10 Hz. VAO: Pole Voltage(50V/div), VC1:C1(Vdc/2) Cap voltage(50V/div), VC2: C2-Cap Voltage(50V/div), IA: Phase Current(2A/div), T:10mS/div

                   

Figure 9. Steady State performance at 20 Hz.VAO: Pole Voltage(50V/div), VC1:C1-Cap voltage(50V/div), VC2: C2-Cap Voltage(50V/div), IA: Phase Current(2A/div), T:10mS/div


                              
Figure 10. Steady State performance at 30 Hz.VAO: Pole Voltage(100V/div), VC1:C1-Cap voltage(50V/div), VC2: C2-Cap Voltage(50V/div), IA: Phase Current(2A/div), T:10mS/div
                        

Figure 11. Steady State performance at 40 Hz.VAO: Pole Voltage(100V/div), VC1:C1-Cap voltage(50V/div), VC2: C2-Cap Voltage(50V/div), IA: Phase Current(2A/div), T:10mS/div


                            
Figure 12. Steady State performance at 50 Hz.VAO: Pole Voltage(100V/div), VC1:C1-Cap voltage(50V/div), VC2: C2-Cap Voltage(50V/div), IA: Phase Current(2A/div), T:10mS/div
                            

Figure 13. Acceleration Performance. VAN: Phase Voltage(100V/div), VC2: C2-Cap Voltage Ripple (2V/div), VCM: Neutral point voltage (10V/div), IA: Phase Current(2A/div) T:500mS/div.
                                             

Figure 14. Capacitor Balancing Algorithm Test, VC1: C1(Vdc/2)Cap voltage, VC2: C2 (Vdc/4) Cap Voltage, VCM: Common mode voltage (10V/div) IA: Phase Current10A/div, T:500mS/div

CONCLUSION:

A three-level common-mode voltage eliminated inverter using five-level inverter formed by cascading a three-level flying capacitor inverter with a H-bridge, was proposed and analyzed. The same was simulated for an induction motor load in Simulink and implemented using IGBT inverter modules. The entire drive structure with the proposed inverter and a three phase Y-connected induction motor was experimentally verified for steady-state operation at various modulation indices. The transient performance during sudden acceleration was also verified. It may be observed that the common mode voltage is negligible even during the switching intervals of the converter. This results in negligible bearing currents and improved life of the bearing. This configuration has reduced number of switches compared to other similar configurations. Another advantage of this topology is the possibility of common-mode voltage elimination using single-ended configuration where the motor windings are fed only from one side. Also, this configuration uses a single DC-supply unlike many other topologies which require multiple isolated supplies. Another important feature of this topology is that if one of the devices in the H-bridge were to fail, the entire configuration could work as a normal three-level inverter at full rated capacity by bypassing the H-Bridge, thereby greatly improving the reliability of the overall system.

 REFERENCES:

[1] S. Kouro, M. Malinowski, K. Gopakumar, J. Pou, L. G. Franquelo, B.Wu, J. Rodriguez, M. A. Perez, and J. I. Leon, “Recent Advances and Industrial Applications of Multilevel Converters,” IEEE Trans. Ind. Electron.,vol. 57, no. 8, pp. 2553–2580, Aug. 2010.
[2] J. Rodriguez, S. Bernet, B. Wu, J. O. Pontt, and S. Kouro, “Multilevel voltage-source-converter topologies for industrial medium-voltage drives,” IEEE Trans. Ind. Electron., vol. 54, no. 6, pp. 2930–2945, Dec.2007.
[3] A. Nabae, I. Takahashi, and H. Akagi, “A new neutral-point-clamped PWM inverter,” IEEE Trans. Ind. Appl., vol. IA-17, no. 5, pp. 518–523, Sep. 1981.
[4] T. A. Meynard and H. Foch, “Multi-level conversion: High voltage choppers and voltage-source inverters,” in Proc. IEEE 23rd Annu. Power Electron.Spec. Conf., Jun. 29–Jul. 3, 1992, vol. 1, pp. 397–403.

[5] M. Marchesoni, M. Mazzucchelli, and S. Tenconi, “A non-conventional power converter for plasma stabilization,” in Proc. IEEE 19th Annu. Power Electron. Spec. Conf. (PESC’88) Rec., Apr. 11–14, vol. 1, pp. 122–129.