ABSTRACT
A novel switched-capacitor inverter is proposed. The
proposed inverter outputs larger voltage than the input voltage by switching
the capacitors in series and in parallel. The maximum output voltage is
determined by the number of the capacitors. The proposed inverter, which does
not need any inductors, can be smaller than a conventional two-stage unit which
consists of a boost converter and an inverter bridge. Its output harmonics are
reduced compared to a conventional voltage source single phase full bridge
inverter. In this paper, the circuit configuration, the theoretical operation,
the simulation results with MATLAB/ SIMULINK, and the experimental results are
shown. The experimental results accorded with the theoretical calculation and
the simulation results.
KEYWORDS
1.
Charge pump
2.
Multicarrier PWM
3.
Multilevel Inverter
4.
Switched capacitor (SC)
SOFTWARE: MATLAB/SIMULINK
CONCLUSION
[2]
A. Emadi, S. S. Williamson, and A. Khaligh, “Power electronics intensive solutions
for advanced electric, hybrid electric, and fuel cell vehicular power systems,”
IEEE Trans. Power Electron., vol. 21, no. 3, pp. 567–577, May 2006.
[3]
L. G. Franquelo, J. Rodriguez, J. I. Leon, S. Kouro, R. Portillo, and M. A. M.
Prats, “The age of multilevel converters arrives,” IEEE Ind. Electron.
Mag., vol. 2, no. 2, pp. 28–39, Jun. 2008.
[4]
Y. Hinago and H. Koizumi, “A single phase multilevel inverter using switched
series/parallel DC voltage sources,” IEEE Trans. Ind. Electron., vol.
57, no. 8, pp. 2643–2650, Aug. 2010.
[5]
S. Chandrasekaran and L. U. Gokdere, “Integrated magnetics for interleaved
DC–DC boost converter for fuel cell powered vehicles,” in Proc. IEEE Power
Electron. Spec. Conf., Jun. 2004, pp. 356–361.
[6]
Y. Hinago and H. Koizumi, “A switched-capacitor inverter using series/ parallel
conversion,” in Proc. IEEE Int. Symp. Circuits Syst., May/Jun. 2010, pp.
3188–3191.
[7]
J. A. Starzyk, Y. Jan, and F. Qiu, “A dc–dc charge pump design based on voltage
doublers,” IEEE Trans. Circuits Syst. I, Fundam. Theory Appl., vol. 48,
no. 3, pp. 350–359, Mar. 2001.
[8]
M. R. Hoque, T. Ahmad, T. R. McNutt, H. A. Mantooth, and M. M. Mojarradi, “A
technique to increase the efficiency of high-voltage charge pumps,” IEEE
Trans. Circuits Syst. II, Exp. Briefs, vol. 53, no. 5, pp. 364–368, May
2006.
[9]
O. C.Mak and A. Ioinovici, “Switched-capacitor inverter with high power density
and enhanced regulation capability,” IEEE Trans. Circuits Syst. I, Fundam.
Theory Appl., vol. 45, no. 4, pp. 336–347, Apr. 1998.
[10]
B. Axelrod, Y. Berkovich, and A. Ioinovici, “A cascade boost-switchedcapacitor-
converter-two level inverter with an optimized multilevel output waveform,” IEEE
Trans. Circuits Syst. I, Reg. Papers, vol. 52, no. 12, pp. 2763–2770, Dec.
2005.
[11]
J. I. Rodriguez and S. B. Leeb, “A multilevel inverter topology for inductively
coupled power transfer,” IEEE Trans. Power Electron., vol. 21, no. 6,
pp. 1607–1617, Nov. 2006.
[12]
X. Kou, K. A. Corzine, and Y. L. Familiant, “A unique fault-tolerant design for
flying capacitor multilevel inverter,” IEEE Trans. Power Electron.,
vol. 19, no. 4, pp. 979–987, Jul. 2004.
[13]
S. Lu, K. A. Corzine, andM. Ferdowsi, “A unique ultracapacitor direct
integration scheme in multilevel motor drives for large vehicle propulsion,” IEEE
Trans. Veh. Technol., vol. 56, no. 4, pp. 1506–1515, Jul. 2007.
[14]
J. I. Leon, S. Vazquez, A. J. Watson, L. G. Franquelo, P. W. Wheeler, and J. M.
Carrasco, “Feed-forward space vector modulation for single-phase multilevel
cascaded converters with any dc voltage ratio,” IEEE Trans. Ind.
Electron., vol. 56, no. 2, pp. 315–325, Feb. 2009.
[15]
B. P. McGrath and D. G. Holmes, “Multicarrier PWM strategies for multilevel
inverters,” IEEE Trans. Ind. Electron., vol. 49, no. 4, pp. 858–867,
Aug. 2002.
[16]
R. Gupta, A. Ghosh, and A. Joshi, “Switching characterization of cascaded multilevel-inverter-controlled
systems,” IEEE Trans. Ind. Electron., vol. 55, no. 3, pp. 1047–1058,
Mar. 2008.
[17]
J. Zhang, Y. Zou, X. Zhang, and K. Ding, “Study on a modified multilevel cascade
inverter with hybrid modulation,” in Proc. IEEE Power Electron. Drive
Syst., Oct. 2001, pp. 379–383.
[18]
V. G. Agelidis, A. I. Balouktsis, and C. Cossar, “On attaining the multiple solutions
of selective harmonic elimination PWM three-level waveforms through function
minimization,” IEEE Trans. Ind. Electron., vol. 55, no. 3, pp. 996–1004,
Mar. 2008.
[19]
J. A. Pontt, J. R. Rodriguez, A. Liendo, P. Newman, J. Holtz, and J. M. San
Martin, “Network-friendly low-switching-frequency multipulse high-power
three-level PWM rectifier,” IEEE Trans. Ind. Electron., vol. 56, no. 4,
pp. 1254–1262, Apr. 2009.
[20]
M. K. Kazimierczuk, “Switching losses with linear MOSFET output capacitance,”
in Pulse-Width Modulated DC–DC Power Converters, 1st ed. West Sussex,
U.K.: Wiley, 2008, ch. 2, pp. 37–38, sec. 2.