asokatechnologies@gmail.com 09347143789/09949240245

Search This Blog

Saturday, 30 January 2021

Five-Level Reduced-Switch-Count Boost PFC Rectifier with Multicarrier PWM

 ABSTRACT

A multilevel boost PFC (Power Factor Correction) rectifier is presented in this paper controlled by cascaded controller and multicarrier pulse width modulation technique. The presented topology has less active semiconductor switches compared to similar ones reducing switching losses as well as the number of required gate drives that would shrink manufactured box significantly. A simple controller has been implemented on the studied converter to generate a constant voltage at the output while generating a five-level voltage waveform at the input without connecting the load to the neutral point of the DC bus capacitors. Multicarrier PWM technique has been used to produce switching pulses from control signal. Multi-level voltage waveform harmonics has been analyzed comprehensively which affects the size of input current and required filters directly. Full simulation and experimental results confirm the good dynamic performance of the proposed five-level PFC boost rectifier in delivering power from AC grid to the DC loads while correcting the power factor at the AC side as well as reducing the current harmonics remarkably.

KEYWORDS

1.      Multilevel Converter

2.      Active Rectifier

3.      Multicarrier PWM

4.       Cascaded Control

5.      Power Quality

SOFTWARE: MATLAB/SIMULINK

CONCLUSION

In this paper a reduced switch count 5-level boost PFC rectifier has been presented. A cascaded PI controller has been designed to regulate the output DC voltage and to ensure the unity power factor mode of the input AC voltage and current. Moreover, low harmonic AC current waveform has been achieved by the implemented controller and employing a small inductive filter at the input line. One of the main issues of switching rectifiers is the high switching frequency that has been reduced in this work using PWM technique through adopting multicarrier modulation scheme. Moreover, DC capacitors middle point has not been connected to the load that had required splitting the load to provide a neutral point. Using a single load with no neutral point makes this topology practical in realistic applications. Comprehensive simulations cases including change in the load, AC voltage fluctuation and generating different DC voltage values have been analysed and performed to ensure the good dynamic performance of the rectifier, adopted controller and switching technique.

REFERENCES

[1] B. Singh, B. N. Singh, A. Chandra, K. Al-Haddad, A. Pandey, and D. P. Kothari, "A review of single-phase improved power quality ACDC converters," Industrial Electronics, IEEE Transactions on, vol. 50, pp. 962-981, 2003.

[2] B. Singh, B. N. Singh, A. Chandra, K. Al-Haddad, A. Pandey, and D. P. Kothari, "A review of three-phase improved power quality AC-DC converters," Industrial Electronics, IEEE Transactions on, vol. 51, pp. 641-660, 2004.

[3] H. Abu-Rub, J. Holtz, J. Rodriguez, and G. Baoming, "Mediumvoltage multilevel converters—State of the art, challenges, and requirements in industrial applications," IEEE Trans. Ind. Electron., vol. 57, pp. 2581-2596, 2010.

[4] H. Abu-Rub, M. Malinowski, and K. Al-Haddad, Power electronics for renewable energy systems, transportation and industrial applications: John Wiley & Sons, 2014.

[5] L. Yacoubi, K. Al-Haddad, L.-A. Dessaint, and F. Fnaiech, "A DSPbased implementation of a nonlinear model reference adaptive control for a three-phase three-level NPC boost rectifier prototype," Power Electronics, IEEE Transactions on, vol. 20, pp. 1084-1092,

2005.