asokatechnologies@gmail.com 09347143789/09949240245

Search This Blog

Thursday 17 June 2021

Comprehensive Review on Solar, Wind and Hybrid Wind-PV Water Pumping Systems-An Electrical Engineering Perspective

ABSTRACT:

 In India, the demand for water is continuously increasing due to the growing population. Approximately 16.5% of all country’s electricity used to pump this water is from fossil fuels leading to increased pump Life Cycle Cost (LCC) and Green House Gas (GHG) emissions. With the recent advancement in power electronics and drives, renewables like solar photovoltaic and wind energy are becoming readily available for water pumping applications resulting in the reduction of GHG emissions. Recently, research towards AC motor based Water Pumping Systems (WPS) has received a great emphasis owing to its numerous merits. Further, considering the tremendous acceptance of renewable sources, especially solar and wind, this paper provides a detailed review of single-stage and multi-stage WPS consisting of renewable source powered AC motors. The critical review is performed based on the following figure of merits, including the type of motor, power electronics interface and associated control strategies. Also, to add to the reliability of solar PV WPS, hybrid Wind-PV WPS will be discussed in detail. Readers will be presented with the state-of-the-art technology and research directions in Renewable Energy-based WPS (REWPS) to improve the overall system efficiency and hence reduce the payback period.

KEYWORDS:

 

1.      AC motor

2.       Hybrid wind-PV system

3.       Multi-stage solar water pump

4.      Pump life cycle cost

5.       Single-stage solar water pump

6.       Water pumping system

SOFTWARE: MATLAB/SIMULINK

CONCLUSION

This paper has attempted to consolidate the research in renewable energy-based water pumping systems. Exhaustive research with the primary focus in the field of electrical engineering like power electronics interface, the motor used for pumping and mainly the control strategy employed for the effective energy utilization of the renewables is presented. The following are the conclusions of this work:

• Investigations conducted on multi-stage SPWPSs, single-stage SPWPSs, Wind WPSs and hybrid Wind-PV systems have been reviewed in detail.

• In each of the systems mentioned above, various research avenues have been conferred to the reader namely, the power electronics interface, MPPT algorithms, type of the motor, motor control algorithms and sensors used for the algorithms.

• Findings of several investigations conducted to compare the performance of multi-stage WPS with single-stage WPS have been presented to weigh the performance of the WPSs.

• Niche areas in REWPSs have been indicated to readers to pursue future research.

This review paper is an effort to guide researchers consolidating work in the area of the REWPS with an emphasis on aspects of electrical engineering (type of motor, power electronics interface and control strategies). In a country like India, which suffers irregular monsoons, harnessing renewable energy sources efficiently to fulfill the requirement of water will be the dire need of the near future. Also, the geographical location of the nation is favorable to produce energy from renewable sources like sunlight and wind. Hence, the authors are in the developmental work of control strategies for REWPSs.

 REFERENCES:

[1] K. B. LTD. (2019, Mar. 28). Life Cycle Cost Analysis – Systematic Approach. [Online]. Available: http://ashraeindia.org/pdf/KBL presenta-tion3.pdf/.

[2] C. Gopal, M. Mohanraj, P. Chandramohan, and P. Chandrasekar, “Renewable energy source water pumping systems—A literature review,” in Renewable and Sustainable Energy Reviews, vol. 25, no. 5, pp. 351–370, Sept. 2013.

[3] P. Periasamy, N. Jain, and I. Singh, “A review on development of photovoltaic water pumping system,” in Renewable and Sustainable Energy Reviews, vol. 43, pp. 918–925, Mar. 2015.

[4] S. Chandel, M. N. Naik, and R. Chandel, “Review of solar photovoltaic water pumping system technology for irrigation and community drinking water supplies,” in Renewable and Sustainable Energy Reviews, vol. 49, no. 9, pp. 1084–1099, May 2015.

[5] R. Rawat, S. Kaushik, and R. Lamba, “A review on modeling, design methodology and size optimization of photovoltaic based water pumping, standalone and grid connected system,” in Renewable and Sustainable Energy Reviews, vol. 57, pp. 1506–1519, Jan. 2016.