asokatechnologies@gmail.com 09347143789/09949240245

Search This Blog

Friday, 11 February 2022

A Five-Level Step-up Module for Multilevel Inverters: Topology, Modulation Strategy and Implementation


ABSTRACT:

 This paper proposes a new single-phase five-level converter based on switched capacitor technique. The capacitor charging in the proposed converter is carried out in a self-balancing form which does not need closed-loop modulations or additional balancing circuits. The proposed topology is a voltage booster without using end side H-bridge for changing load voltage polarity. So, switching losses and total voltage stress of semiconductor components reduce in the proposed converter. The performing modes of the proposed topology, its modulation scheme, capacitors’ balancing analysis, capacitance and loss calculations, and also the development of the proposed converter for enhancing the quality of output voltage waveform are discussed in depth. Moreover, the comparison of the proposed structure with the other multi-level topologies shows that the proposed converter can reduce the number of semiconductor elements and the required isolated DC sources. Finally, the simulation and experimental results validate the appropriate performance of the proposed converter.

KEYWORDS:

1.      Power conversion

2.      Multilevel converter

3.      Switched capacitor technique

4.      Self-balancing

5.      Phase disposition pulse width modulation technique

SOFTWARE: MATLAB/SIMULINK

PROPOSED DIAGRAM:

 

Fig. 1. Circuit arrangement of the proposed converter (VLoad = Va-Vb)

 EXPECTED SIMULATION RESULTS:


Fig. 2. Simulation results, (a) output waveforms with resistive load (ZL=50Ω) (b) output waveforms with resistive-inductive load (ZL=50Ω+100mH) (c) capacitors’ voltage (d) output voltage THD

Fig. 3. The simulation results with sudden change in the load (a) first scenario (b) second scenario (c) third scenario

Fig. 4. The simulation results of the capacitors’ voltage, output voltage and current in diode–rectifier state with R–C load (R=120Ω, C=2.2mF)


Fig. 5. (a) Modules’ output voltage (b) capacitors’ voltage (c) converter’s output voltage and current with ZL=100Ω (d) converter’s output voltage and current with ZL=100Ω+200mH

CONCLUSION:

 

In this paper, a single phase five-level switched-capacitor converter is proposed, which is combination of a switched capacitor cell (SCC) and two half-bridge cell (HBC). The capacitors’ charging in the proposed topology is carried out in self-balancing form and the charging time is independent of the load. The main idea of the proposed configuration is to reduce the number of power devices along with boosting capability. Compared to other five-level converters, the proposed topology reduces the number of DC power supplies, semiconductor switches, diodes, size and cost of the system. Simple configuration, easy control and voltage booster are the main benefits of the proposed converter. Operational modes of proposed topology and its modulation strategy, capacitors’ charging analysis and voltage stress of the switches, capacitance and power losses calculations are presented in depth. Finally, the operation and performance of the proposed converter are verified with experiments on a 5-level prototype.

REFERENCES:

 

[1] L. G. Franquelo, J. Rodriguez, J. I. Leon, S. Kouro, R. Portillo, and M. A. M. Prats, "The age of multilevel converters arrives," IEEE Industrial Electronics Magazine, vol. 2, pp. 28-39, 2008.

[2] F. Gao, "An Enhanced Single Phase Step-Up Five-Level Inverter," IEEE Trans. Power Electron., vol. PP, pp. 1-1, 2016.

[3] C. H. Hsieh, T. J. Liang, S. M. Chen, and S. W. Tsai, "Design and Implementation of a Novel Multilevel DC-AC Inverter," IEEE Trans. Ind. Appl., vol. 52, pp. 2436-2443, 2016.

[4] A. Nabae, I. Takahashi, and H. Akagi, "A New Neutral-Point-Clamped PWM Inverter," IEEE Trans. Ind. Appl., vol. IA-17, pp. 518-523, 1981.

[5] T. A. Meynard and H. Foch, "Multi-Level Choppers for High Voltage Applications," EPE Journal, vol. 2, pp. 45-50, 1992.