asokatechnologies@gmail.com 09347143789/09949240245

Search This Blog

Thursday, 24 February 2022

A Switched-Capacitor Inverter Using Series/Parallel Conversion With Inductive Load

 ABSTRACT:

A novel switched-capacitor inverter is proposed. The proposed inverter outputs larger voltage than the input voltage by switching the capacitors in series and in parallel. The maximum output voltage is determined by the number of the capacitors. The proposed inverter, which does not need any inductors, can be smaller than a conventional two-stage unit which consists of a boost converter and an inverter bridge. Its output harmonics are reduced compared to a conventional voltage source single phase full bridge inverter. In this paper, the circuit configuration, the theoretical operation, the simulation results with MATLAB/ SIMULINK, and the experimental results are shown. The experimental results accorded with the theoretical calculation and the simulation results.

 KEYWORDS:

1.      Charge pump

2.      Multicarrier PWM

3.      Multilevel inverter

4.      Switched capacitor (SC)

 SOFTWARE: MATLAB/SIMULINK

 CIRCUIT DIAGRAM:

 

Fig. 1. Circuit topology of the switched-capacitor inverter using series/ parallel conversion.

 EXPECTED SIMULATION RESULTS:

 

Fig. 2. Simulated voltage waveforms of the proposed inverter (n = 2) designed for low power at 5.76 [W], switching  frequency f = 40 [kHz] and reference waveform frequency fref = 1 [kHz]. (a) Bus voltage waveform vbus and (b) the output voltage waveform vout.


Fig. 3. Simulated voltage waveforms of the proposed inverter (n = 2) designed for high power at 4.50 [kW], switching frequency f = 40 [kHz] and reference waveform frequency fref = 1 [kHz]. (a) Bus voltage waveform vbus and (b) the output voltage waveform vout.

 

Fig. 4. Simulated current waveforms of the capacitor iC1 in the proposed inverter (n = 2).(a) Designed for low power at 5.76 [W] and (b) designed for high power at 4.50 [kW].

 



Fig. 5. Simulated spectra of the bus voltage waveform of the proposed inverters (n = 2) normalized with the fundamental component. (a) Designed for low power at 5.76 [W] and (b) designed for high power at 4.50 [kW].



 Fig. 6. Simulated bus voltage waveforms vbus and the voltage waveforms of the load resistance vR of the proposed inverter (n = 2) designed for low power at 5.76 [W] with an inductive load.

 

CONCLUSION:

 In this paper, a novel boost switched-capacitor inverter was proposed. The circuit topology was introduced. The modulation method, the determination method of the capacitance, and the loss calculation of the proposed inverter were shown. The circuit operation of the proposed inverter was confirmed by the simulation results and the experimental results with a resistive load and an inductive load. The proposed inverter outputs a larger voltage than the input voltage by switching the capacitors in series and in parallel. The inverter can operate with an inductive load. The structure of the inverter is simpler than the conventional switched-capacitor inverters. THD of the output waveform of the inverter is reduced compared to the conventional single phase full bridge inverter as the conventional multilevel inverter.

REFERENCES:

[1] H. Liu, L. M. Tolbert, S. Khomfoi, B. Ozpineci, and Z. Du, “Hybrid cascaded multilevel inverter with PWM control method,” in Proc. IEEE Power Electron. Spec. Conf., Jun. 2008, pp. 162–166.

[2] A. Emadi, S. S. Williamson, and A. Khaligh, “Power electronics intensive solutions for advanced electric, hybrid electric, and fuel cell vehicular power systems,” IEEE Trans. Power Electron., vol. 21, no. 3, pp. 567–577, May 2006.

[3] L. G. Franquelo, J. Rodriguez, J. I. Leon, S. Kouro, R. Portillo, and M. A. M. Prats, “The age of multilevel converters arrives,” IEEE Ind. Electron. Mag., vol. 2, no. 2, pp. 28–39, Jun. 2008.

[4] Y. Hinago and H. Koizumi, “A single phase multilevel inverter using switched series/parallel DC voltage sources,” IEEE Trans. Ind. Electron., vol. 57, no. 8, pp. 2643–2650, Aug. 2010.

[5] S. Chandrasekaran and L. U. Gokdere, “Integrated magnetics for interleaved DC–DC boost converter for fuel cell powered vehicles,” in Proc. IEEE Power Electron. Spec. Conf., Jun. 2004, pp. 356–361.