asokatechnologies@gmail.com 09347143789/09949240245

Search This Blog

Monday, 28 February 2022

Grid to Vehicle and Vehicle to Grid Energy Transfer using Single-Phase Bidirectional ACDC Converter and Bidirectional DC – DC converter

 ABSTRACT:

In this paper, a configuration of a single-phase bidirectional AC-DC converter and bidirectional DC-DC converter is proposed to transfer electrical power from the grid to an electrical vehicle (EV) and from an EV to the grid while keeping improved power factor of the grid. In first stage, a 230 V 50 Hz AC supply is converted in to 380V dc using a single-phase bidirectional AC-DC converter and in the second stage, a bidirectional buck–boost dc-dc converter is used to charge and discharge the battery of the PHEV (Plug-in Hybrid Electric Vehicle). In discharging mode, it delivers energy back to the grid at 230V, 50 Hz. A battery with the charging power of 1.2 kW at 120V is used in PHEV. The buck-boost DC-DC converter is used in buck mode to charge and in a boost mode to discharge the battery. A proportional-integral (PI) controller is used to control the charging current and voltage. Simulated results validate the effectiveness of proposed algorithm and the feasibility of system.

KEYWORDS:

1.      Plug-in Hybrid Electric Vehicle (PHEV)

2.      Bidirectional AC-DC Converter

3.      DC-DC Converter

4.      Vehicle to grid (V2G)

5.      Electric drive vehicle (EDVs)

SOFTWARE: MATLAB/SIMULINK

 

BLOCK DIAGRAM:



Fig.1 Proposed configuration for V2G and G2V Energy transfer

 EXPECTED SIMULATION RESULTS:


Fig.2 Charging and discharging of PHEV battery (Full profile)


Fig.3 Charging and discharging of PHEV battery (in large view)



Fig.4. Discharging and Charging of PHEV battery demonstrating unity

Power factor operation

 

CONCLUSION:

 The proposed converter has delivered the AC current to/and from the grid at unity power factor and at very low current harmonics which ultimately prolongs the life of the converter and the battery and minimizes the possibility of distorting the grid voltage. It also enables V2G interactions which could be utilized to improve the efficiency of the grid.

REFERENCES:

 [1] Young-Joo Lee, Alireza Khaligh, and Ali Emadi, “Advanced Integrated Bidirectional AC/DC and DC/DC Converter for Plug-In Hybrid Electric Vehicles,” IEEE Trans. on Vehicular Tech. vol. 58, no. 8, pp. 3970-3980, Oct, 2009.

[2] Bhim Singh, Brij N. Singh, Ambrish Chandra, Kamal Al-Haddad, Ashish Pandey and Dwarka P. Kothari, “A review of single-phase improved power quality ac–dc converters,” IEEE Trans. Industrial Electronics, vol. 50, no. 5, pp. 962-981, Oct. 2003.

[3] M.C. Kisacikoglu, B. Ozpineci and L.M. Tolbert, "Examination of a PHEV bidirectional charger system for V2G reactive power compensation," in Proc. of Twenty-Fifth Annual IEEE Applied Power Electronics Conference and Exposition (APEC), 2010, 21-25 Feb.2010, pp.458-465.

[4] M.C. Kisacikoglu, B. Ozpineci and L.M. Tolbert, “Effects of V2G reactive power compensation on the component selection in an EV or PHEV bidirectional charger," in Proc. of Energy Conversion Congress and Exposition (ECCE), 2010 IEEE, 12-16 Sept. 2010, pp.870-876.

[5] W. Kempton and J. Tomic, “Vehicle-to-grid power fundamentals: Calculating capacity and net revenue,” J. Power Sources, vol. 144, no. 1, pp. 268–279, Jun. 2005.