asokatechnologies@gmail.com 09347143789/09949240245

Search This Blog

Tuesday, 13 July 2021

Power Quality Improvement of Grid-Connected Photovoltaic Systems Using Trans-Z-Source Inverter Under Partial Shading Condition

ABSTRACT:

Voltage-source inverter has been used widely in traditional photovoltaic systems which have limitations. To overcome, Z-source inverter has been introduced. In spite of all the features introduced in Z-source inverter, its configuration has been improved over the years, like trans-Z-source inverter which has added advantages compared to traditional inverters, namely buck–boost feature, lesser passive elements, and higher voltage boost gain. In this paper, photovoltaic arrays are connected to the grid via the trans-Z-source inverter with the aim of improving its power quality. Moreover, the shoot through duty ratio is kept constant in the switching control method to add features like lower voltage stress (higher reliability), lower total harmonic distortion (lower maintenance cost), and higher voltage boost ratio. To evaluate the precision of the proposed system, the photovoltaic system is simulated on a standard grid and under partial shading condition which brings about voltage sag, and hence, a dynamic voltage restorer is used to mitigate voltage sag. Simulation results are presented to verify the validation of the proposed photovoltaic system in terms of voltage and current THD reducing 78.2% and 19.7%, respectively.

KEYWORDS:

1.      PV system

2.      Trans-Z-source inverter

3.      THD

4.      Partial shading

5.      Voltage sag

6.      DVR

SOFTWARE: MATLAB/SIMULINK

CONCLUSION:

In this paper, a PV system is connected to the IEEE 15-bus test network via trans-ZSI with the aim of power quality improvement, plus MCBC control is used to decrease voltage and current THD, and more importantly, to reduce voltage stress across the switches. The results indicate that applying the trans-ZSI and an appropriate switching method improve the power quality of the PV system to a considerable extent. Besides, the cost, volume, and weight of this inverter are low because of having no low-frequency ripples of the output voltage. What is more, as the shoot through does not damage the inverter, the reliability of the inverter is higher. In turn, not only is the reliability of this inverter higher, but also its maintenance cost is lower. The proposed PV system is also studied under partial shading conditions to validate its performance when there are some voltage sags. So, a DVR is employed to detect voltage sags and then mitigate them once partial shading happens. Two conclusions can be drawn from cases C and D: The voltage amplitude is roughly fallen back to its rated value, and the voltage THD is reduced when trans-ZSI is used. To summarize, the results illustrate that the PV system operates accurately with the trans-ZSI, as opposed to the PV systems with traditional VSI.

REFERENCES:

Abdulkadir M, Samosir AS, Yatim AHM, Yusuf ST (2013) A new approach of modelling, simulation of MPPT for photovoltaic system in simulink model. ARPN J Eng Appl Sci 8(7):488–494

Ajaykumar T, Manmadharao S, Kumar NG, Venkateswarlu G (2017) Compensation of unbalanced voltage sag/swell by multilevel inverter-based dynamic voltage restorer. Int J Pure Appl Math 114(7):11–20

Al Hosani K, Nguyen TH, Al Sayari N (2018) An improved control strategy of 3P4W DVR systems under unbalanced and distorted voltage conditions. Int J Electr Power Energy Syst 98:233–242

Bidram A, Davoudi A, Balog RS (2012) Control and circuit techniques to mitigate partial shading effects in photovoltaic arrays. IEEE J Photovolt 2:532–546

Boonchiam P, Mitholananthan N (2008) Understanding of dynamic voltage restorers through MATLAB simulation. Thammasat Int J Sci Technol 11(3):1–6