asokatechnologies@gmail.com 09347143789/09949240245

Search This Blog

Sunday 4 July 2021

Selective Harmonics Elimination Technique in Single Phase Unipolar H-Bridge Inverter

ABSTRACT:  

Specific odd harmonics can be mitigated by operating the semiconductor switches in H-bridge inverters at optimized switching angles of the PWM signals. These switching angles can be achieved by deriving a number of nonlinear equations using Selective Harmonic Elimination Pulse Width Modulation (SHEPWM) method. Modulation index (m) is a significant parameter used to control the amplitude of the fundamental output voltage of DC-AC inverter. By changing the value of modulation index the Total Harmonics Distortion (THD) also will change. In this paper, the performance of single phase full-bridge inverter using SHE-PWM scheme with varying the modulation index is evaluated. In order to achieve a minimum THD, a different number of nonlinear equations are used to calculate the switching angles. The performance of a single phase unipolar inverter is simulated in Matlab.

KEYWORDS:

1.      Selective Harmonic Elimination

2.      H-bridge Inverter

SOFTWARE: MATLAB/SIMULINK

CONCLUSION:

Matlab-Simulink is used to evaluate the proposed technique in order to mitigate 3th, 5th, 7th, 9th, 11th & 13th harmonics and to verify the influence of various condition of modulation index on THD in single-phase full-bridge H inverter. Low order odd harmonics can be mitigated successfully by using SHE-PWM also, by adjusting the switching angles the Total Harmonic Distortion is decreased to a minimum of 57.47%. These switching angles are applied to generate control signals of full-bridge H-inverter. By increasing the modulation index the THD decreased. Also, the fundamental voltage of the inverter is maximized by variation of modulation index with switching angles optimized.

REFERENCES:

[1]. Ashok, B., & Rajendran, A. (2013). Selective Harmonic Elimination of Multilevel Inverter Using SHEPWM Technique. International Journal of Soft Computing and Engineering (IJSCE), 3(2), 79–82.

[2]. Basri, A. B., Zaidi, N. A., Bopi, N. B., Aboadla, E. H., Khan, S., & Habaebi, M. H. (2016). EFFECTS OF SWITCHING FREQUENCY TO SERIES LOADED SERIES RESONANT CIRCUIT. ARPN Journal of Engineering and Applied Sciences, 11(1), 382–386.

[3]. Dahidah, M. S. A., & Agelidis, V. G. (2007). Non-symmetrical selective harmonic elimination PWM techniques: The unipolar waveform. PESC Record - IEEE Annual Power Electronics Specialists Conference, 1885–1891.

[4]. Edpuganti, K. (2015). Fundamental Switching Frequency Optimal Pulse width Modulation of Medium-Voltage Nine-Level Inverter. IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 62(7), 4096– 4104.

[5]. Ghalib, M. A., & Abdalla, Y. S. (2014). Design and Implementation of a Pure Sine Wave Single Phase Inverter for Photovoltaic Applications. AMERRICAN SOCIETY FOR ENGINEERING EDUCATION, ASEE, 1– 8.