asokatechnologies@gmail.com 09347143789/09949240245

Search This Blog

Tuesday, 13 July 2021

Recursive Digital Filter Based Control for Power Quality Improvement of Grid Tied Solar PV System

ABSTRACT:

 This work deals with the implementation of a control approach for an active power transfer between solar photovoltaic (PV) array and the grid/ load along-with power quality improvement by eliminating harmonics and compensating reactive power required by the load in the distribution network. The power quality (PQ) problems at the point of intersection (PIC), are increasing preeminently with respect to voltage and current harmonics due to integration of renewable sources. The recursive digital filter control implemented here for PV grid interfaced system is efficient in improving PQ indices by operating round the clock and ensuring power transfer between utility grid and connected loads. The prominence of the control algorithm lies in the efficient switching of VSC, by generating reference grid currents, which are obtained through indirect current control technique. The recursive digital filter is utilized for processing the load currents and extracting the active power component of them. These active power components of load currents are used for generating the reference grid currents in this system. A prototype of the system is developed in the laboratory and its performance is studied for varying loads, changing solar insolation, and voltage swell, voltage sag and voltage distortion conditions.

KEYWORDS:

1.      Solar PV Generation

2.      Distribution Static Compensator (DSTATCOM)

3.      Power Quality

4.       Recursive Digital Filter

SOFTWARE: MATLAB/SIMULINK

CONCLUSION:

The performance of the grid tied PV system has been validated under weak grid conditions. Experimental validation has been performed for conditions of nonlinear load, at decrease of solar insolation, load injection, voltage swell and voltage sag conditions, unbalance and distortion. The control structure based on recursive digital filter, alleviates the complexity of the system and is easy to implement in the system. The switching pulses of VSC are generated by utilizing reference currents obtained by this control approach. In accordance to the IEEE- 519 standard, the grid current THD is obtained less than 5 %. Satisfactory performance based on experimental validation, has been obtained for the system.

REFERENCES:

 [1] H. M. Bilal and A. Z. Khan, “Economic planning of network for integration of renewable: A review,” Proc. Pow. Gen. Sys. Renew. Ener. Tech. (PGSRET), pp. 1-3, 2015.

[2] I. Akhtar, S. Kirmani and M. Jamil, “Analysis and design of a sustainable microgrid primarily powered by renewable energy sources with dynamic performance improvement,” IET Renew. Pow. Gen., vol. 13, no. 7, pp. 1024-1036, 2019.

[3] X. Liang, “Emerging Power Quality Challenges Due to Integration of Renewable Energy Sources,” IEEE Trans. Indus. Appl., vol. 53, no. 2, pp. 855-866, March-April 2017.

[4] M. D'Antonio, C. Shi, B. Wu and A. Khaligh, “Design and Optimization of a Solar Power Conversion System for Space Applications,” IEEE Trans. Indus. Appl., vol. 55, no. 3, pp. 2310-2319, May-June 2019.

[5] K. R. Sree, A. K. Rathore, E. Breaz and F. Gao, “Soft-Switching Non- Isolated Current-Fed Inverter for PV/Fuel Cell Applications,” IEEE Trans. Indus. Appl., vol. 52, no. 1, pp. 351-359, Jan.-Feb. 2016